## 2102440 Introduction to Microprocessors

# Chapter 6 The 8086 Hardware Architecture

Suree Pumrin, Ph.D.

1

### **Topics**

- Minimum-mode and maximum-mode systems
- > DEMUX address/Data bus
- > Bus cycle and time states

#### The 8086 Microprocessor



The 8086 in Minimum Mode

- It is a 40-pin dual in-line package.
- Many pins have multiple functions.
- It can work in two modes: minimum mode and maximum mode.
- Maximum mode is used when it needs to connect to an 8087 math coprocessor.
- The minimum mode is selected by making the MN/MX equal to 1.
- The maximum mode is selected by making the MN/MX equal to 0.
- Minimum mode 8086 system has one microprocessor.

2102440 Introduction to Microprocessors

3

## Common Signals in both Minimum and Maximum Modes

| Name               | Function                      | Туре                   |  |
|--------------------|-------------------------------|------------------------|--|
| AD15-AD0           | Address/data bus              | Bidirectional, 3-state |  |
| A19/S6-A16/S3      | Address/status                | Output, 3-state        |  |
| BHE / S7           | Bus High Enable/Status        | Output, 3-state        |  |
| $MN/\overline{MX}$ | Minimum/maximum Mode control  | Input                  |  |
| $\overline{RD}$    | Read control                  | Output, 3-state        |  |
| TEST               | Wait on test control          | Input                  |  |
| READY              | Wait state control            | Input                  |  |
| RESET              | System reset                  | Input                  |  |
| NMI                | Nonmaskable Interrupt request | Input                  |  |
| INTR               | Interrupt request             | Input                  |  |
| CLK                | System clock                  | Input                  |  |
| V <sub>cc</sub>    | +5 V                          | Input                  |  |
| GND                | Ground                        | Input                  |  |

2102440 Introduction to Microprocessors

#### Unique Minimum Mode Signals

|        | 1 GND                               | 1       | Vcc                                                             | 122                                          | 13330    |
|--------|-------------------------------------|---------|-----------------------------------------------------------------|----------------------------------------------|----------|
| 000000 | 4 AD12<br>5 AD11<br>6 AD10<br>7 AD9 |         | AD15<br>A16/S3<br>A17/S4<br>A18/S5<br>A19/S6<br>BHE/S7<br>MN/MX | 38<br>37<br>36                               | 00000    |
| 00000  | March 1997                          | 8 0 8 6 | HOLD<br>HLDA<br>WR<br>IO/M<br>DT/R                              | 32<br>31<br>30<br>29<br>28<br>27<br>26<br>25 | 00000000 |
| 000    | 18 INTR<br>19 CLK<br>20 GND         |         | TEST<br>READY                                                   | 23<br>22<br>21                               |          |

| Name              | Function              | Type            |
|-------------------|-----------------------|-----------------|
| HOLD              | Hold request          | Input           |
| HLDA              | Hold acknowledge      | Output          |
| $\overline{WR}$   | Write control         | Output, 3-state |
| $\overline{IO}/M$ | IO/memory control     | Output, 3-state |
| $DT/\overline{R}$ | Data transmit/receive | Output, 3-state |
| $\overline{DEN}$  | Data enable           | Output, 3-state |
| ALE               | Address latch enable  | Output          |
| <del>INTA</del>   | Interrupt acknowledge | Output          |

The 8086 in Minimum Mode

2102440 Introduction to Microprocessors

5

### Unique Maximum Mode Signals



| Name                              | Function                         | Type            |
|-----------------------------------|----------------------------------|-----------------|
| $\overline{RQ}/\overline{GT1,0}$  | Request/grant bus access control | Bidirectional   |
| <del>LOCK</del>                   | Bus priority lock control        | Output, 3-state |
| $\overline{S2}$ – $\overline{S0}$ | Bus cycle status                 | Output, 3-state |
| QS1, QS0                          | Instruction queue status         | Output          |

The 8086 in Maximum Mode

2102440 Introduction to Microprocessors





#### Microprocessor Buses (I)

- > The 8086 has three sets of separate buses
  - The address bus provides the path for the address to locate the targeted device.
  - The data bus transfers data between CPU and the targeted device.
  - The control bus provides the signals to indicate the type of operation being executed.

2102440 Introduction to Microprocessors

9

#### Microprocessor Buses (II)

- Address/Data bus
  - The address bus is 20 bits long (A<sub>0</sub>-A<sub>19</sub>).
  - The data bus  $D_0$ - $D_{15}$  are multiplexed with address bus  $A_0$ - $A_{15}$  ->  $AD_0$   $AD_{15}$ .
  - The ALE ( Address Latch Enable) is set high to indicate the information on AD0-AD15 is address; ALE is low when AD0-AD15 carry data.
  - The process of separating address and data from pins AD0-AD15 is called demultiplexing.
- > Control bus
  - There are many controls signals; however, we emphasis on the read and write operations:

| RD | WR | ĪO/M | Signal        |
|----|----|------|---------------|
| 0  | 1  | 0    | ĪŌR           |
| 1  | 0  | 0    | ĪŌW           |
| 0  | 1  | 1    | MEMR          |
| 1  | 0  | 1    | MEMW          |
| 0  | 0  | х    | Never happens |

2102440 Introduction to Microprocessors







The 8086 uses 4 clocks for memory and I/O bus activities.

#### Read timing:

- The first clock cycle -- ALE latches the address
- The second and third clock cycles the read signal is provided.
- The end of fourth clock cycle the data must be at the pins of the CPU to be fetched in.
  2102440 Introduction to Microprocessors