2102440 Introduction to Microprocessors

Chapter 8
Introduction to Other Microprocessors: RISC Processor Architecture

Mike Maynard

Topics

- An overview of the architecture of RISC processors for engineers familiar with CISC processors, or engineers new to processor architecture

CISE and RISC

- **CISC**
 - Complex instructions
 - Large instruction set
 - Instructions vary in length
 - Instructions always the same length
 - Instructions execute in a single cycle
 - Focus on doing a lot in one instruction

- **RISC**
 - Simple instructions
 - Small instruction set
 - Instructions always the same length
 - Instructions execute in a single cycle
 - Focus on simple core \(\Rightarrow \) high clock speeds

The MIPS Instruction Sets

- MIPS I
- MIPS II
- MIPS III
- MIPS IV
- MIPS V

32-bit

64-bit

Apple specific
Enhancements

MIPS6

Vendor specific
Enhancements
RISC Processor Block Diagram

Data Flow in RISC Integer Core

Pipelining of Instructions

Problems with Pipelining
Memory Hierarchy: Caching

- CPU Core
- L-Cache
- D-Cache
- Level 2 Cache
- DRAM Main Memory

Associativity of Caches

- Direct Mapped
- 2-Way Set Associative

Memory Mapping

- CPU memory
- Unmapped, Unmapped
- Kernel Mapped, Cached
- Kernel Unmapped, Unmapped
- User Mapped, Cached

Virtual Addresses

- Physical Addresses

Exception Handling

- Exceptions are any interruption to normal operation
 - Interrupts, arithmetic overflow, bus errors, etc
- RISC philosophies apply to exceptions
 - No large tables of vectors
 - MIPS architecture uses two exception vectors
 - Software saves the state and manages nesting
- A software approach gives more flexibility
Accessing Peripherals
- No separate memory and IO space
- Peripherals are memory mapped
- Caching needs to be considered:
 - Uncached access
 - Flush cache before accessing
 - Use special instructions

Optimizing the Performance of RISC Processor Systems
- **Hardware**
 - Keep the pipeline running:
 - Caches
 - Fast memory systems
 - High bus speeds
 - DMA controllers
- **Software**
 - Application-specific
 - DSP enhancements
 - Generic
 - Optimize cache usage
 - Compiler techniques

Summary -- RISC Architectures
- MIPS
- ARM
- PowerPC
- Hitachi SH
- i960