
 Using The Electric VLSI Design System

Table of Contents
Chapter 1: Introduction ...1

1−1: Welcome..1
1−2: About Electric..2
1−3: Requirements...3

Memory Control...3
1−4: Setup..4
1−5: Plug−Ins...5
1−6: Fundamental Concepts..6
1−7: The Display...9
1−8: The Mouse...11
1−9: The Keyboard..12
1−10−1: IC Layout Example: Make a Cell..13

1−10−2: IC Layout Example: Create a Node...13
1−10−3: IC Layout Example: Highlighting..14
1−10−4: IC Layout Example: Make an Arc...15
1−10−5: IC Layout Example: Constraints..15
1−10−6: IC Layout Example: Hierarchy..16
1−10−7: IC Layout Example: Exports..17
1−10−8: IC Layout Example: Final Points...17

1−11−1: Schematics Example: Make a Cell..18
1−11−2: Schematics Example: Make a Node...19
1−11−3: Schematics Example: Highlighting..19
1−11−4: Schematics Example: Make an Arc...20
1−11−5: Schematics Example: Multi−Input gates and Negation...20
1−11−6: Schematics Example: Constraints..20
1−11−7: Schematics Example: Hierarchy and Icons..21
1−11−8: Schematics Example: Final Points...22

Chapter 2: Basic Editing..23
2−1−1: Selecting Nodes and Arcs...23

2−1−2: Selection Appearance...24
2−1−3: Unusual Selection: Areas and Text..24
Selecting Text...25
2−1−4: Controlling Selection...25
2−1−5: Easy and Hard Selection..26

2−2−1: Node Creation...27
2−2−2: Arc Creation...28
2−2−3: Special Cases..29

2−3: Circuit Deletion...30
2−4−1: Movement..32

2−4−2: Other Modification...33
2−5−1: Node Sizing...35

2−5−2: Arc Sizing...36
2−6: Changing Orientation..37

Chapter 3: Hierarchy...39
3−1: Cells...39
3−2: Cell Creation and Deletion..40
3−3: Creating Instances...42

 Using The Electric VLSI Design System i

Table of Contents
3−4: Examining Cell Instances..44
3−5: Moving Up and Down the Hierarchy..45
3−6−1: Export Creation...46

3−6−2: Export Information...48
3−6−3: Export Deletion and Movement...49

3−7−1: Cell Lists...50
3−7−2: Cell Graphing...51
3−7−3: Cell Properties..52

3−8: Rearranging Cell Hierarchy...54
3−9−1: Introduction to Libraries..55

3−9−2: Reading Libraries...56
3−9−3: Writing Libraries..57
3−9−4: Standard Cell Libraries..59

3−10: Copying Cells Between Libraries..61
3−11−1: Setting a Cell's View...63

3−11−2: Switching between Views of a Cell...63
3−11−3: Creating and Deleting Views...64
3−11−4: Automatic Icon Generation..65

Chapter 4: Display..67
4−1: The Tool Bar..67
4−2: The Messages Window..68
4−3: Creating and Deleting Editing Windows...69
4−4−1: Scaling...70

4−4−2: Panning...71
4−4−3: Saving Views...71

4−5: Layer Visibility..72
4−6−1: Electric's Color Model...73

4−6−2: Editing Colors..74
4−6−3: Editing Patterns..75

4−7−1: Drawing a Grid..76
4−7−2: Aligning to a Grid..76
4−7−3: Aligning to Objects..77
4−7−4: Measuring...77

4−8: The Cell Explorer..78
4−9: Printing..81
4−10: Text Windows...83
4−11−1: Introduction...85

Troubleshooting..86
4−11−2: 3D Preferences...87
Lights..88
4−11−3: Behaviors and Animation...89

4−12−1: Digital Waveform Windows...90
Wave Panels..90
Time Control...91
Stimuli (for Built−in Simulators only)...92
Other Controls...93
4−12−2: Analog Waveform Windows..94
Wave Panels..94

ii Using The Electric VLSI Design System

Table of Contents
Time Control...95
Other Controls...96

Chapter 5: Arcs...97
5−1: Introduction to Arcs...97
5−2−1: Rigid and Fixed−Angle Arcs...98

5−2−2: Slidable Arcs..98
5−2−3: Constraint Propagation...99

5−3: Setting Constraints...100
5−4−1: Directionality...101

5−4−2: Negation...101
5−4−3: End Extension..102
5−4−4: Naming...102
5−4−5: Curvature..102

5−5: Default Arc Properties...103

Chapter 6: Advanced Editing..105
6−1: Making Copies...105

Duplication..105
Cut−and−Paste..105

6−2: Creation Defaults...106
6−3: Preferences..108
6−4: Making Arrays...110
6−5: Spreading Circuitry...112
6−6: Replacing Circuitry...113
6−7: Undo Control...115
6−8−1: Understanding Text...116

6−8−2: Selecting Text...116
6−8−3: Modifying Text..117
6−8−4: Text Defaults..119
6−8−5: Text Attributes...120
Special Considerations..121
6−8−6: Cell Parameters..121
Parameter Text..122

6−9−1: Introduction to Networks..123
6−9−2: Naming Networks..124
6−9−3: Bus Naming..125
6−9−4: Power and Ground..125
6−9−5: Global Networks..126
Global Partitioning..126

6−10−1: Introduction to Outlines..127
6−10−2: Manipulating Outlines..127
6−10−3: Special Outline Generation..128

6−11: Interpretive Languages..129
6−12: Project Management..130

Setting Up Project Management...131
Checking Cells In and Out..131
Advanced Commands...132
Under the Hood...133

 Using The Electric VLSI Design System iii

Table of Contents
6−12: Emergencies..134

Chapter 7: Technologies...135
7−1−1: Technologies...135

7−1−2: Controlling Technologies...136
7−2−1: Scale..138

7−2−2: Units...139
7−3−1: I/O Specifications..140

7−3−2: CIF Control..140
7−3−3: GDS Control...141
7−3−4: EDIF Control..143
7−3−5: DEF Control...144
7−3−6: CDL Control...144
7−3−7: DXF Control...145
7−3−8: SUE Control...146

7−4−1: The MOS Technologies..147
7−4−2: The MOSIS CMOS Technology..148

7−5−1: The Schematics Technology...150
7−5−2: Multipage Schematics and Frames...151

7−6−1: The Artwork Technology..153
7−6−2: The FPGA Technology..155
Primitive Definition Section...155
Block Definition and Architecture Sections...157
Commands..159
7−6−3: The Generic Technology..159
Special Arcs..159
Special Nodes...160

Chapter 8: Creating New Technologies..161
8−1: Designing New Technologies..161
8−2: Converting between Technologies and Libraries..162

Converting Technologies to Libraries..162
Technology−Editing Mode...162
Converting Libraries to Technologies..162
Cleaning Up..163
Using Technology Libraries...163

8−3: Hierarchies of Technology Libraries...164
8−4: The Layers Cells..165

Layer Function..166
8−5: The Arc Cells...168

Creating and Deleting Arc Cells...168
Editing Special Arc Information...168
Editing Arc Geometry...169

8−6: The Node Cells..171
Creating and Deleting Node Cells..171
Editing Special Node Information..171
Editing Node Geometry..172
Special Node Considerations..173

8−7: Miscellaneous Information..174

iv Using The Electric VLSI Design System

Table of Contents
The Support Cell...174
Transparent Colors..175
Design Rules...175

8−8: How Technology Changes Affect Existing Libraries...176
Adding layers, adding arcs, adding nodes, adding miscellaneous information......................176
Deleting layers..176
Deleting nodes, deleting arcs..176
Deleting miscellaneous information...176
Modifying layers...176
Modifying arcs, modifying nodes...177
Modifying miscellaneous information..178

8−9: Examples of Use..179
Example: Modifying a Layer's Appearance...179
Example: Creating a New Node...180

Chapter 9: Tools..183
9−1: Introduction to Tools...183
9−2−1: Incremental DRC...185

9−2−2: Hierarchical DRC...186
9−2−3: Coverage Rules..187
9−2−4: Assura DRC...187
9−2−5: Design Rules..187

9−3−1: Well and Substrate Checking..191
9−3−2: Antenna Rule Checking...192

9−4−1: Introduction to Simulation..193
9−4−2: Verilog..193
9−4−3: Spice...195
9−4−4: Spice and Verilog Primitives...199
9−4−5: FastHenry...200

9−5−1: IRSIM..202
9−5−2: ALS..204
Preferences..204
9−5−3: ALS Concepts..204
Behavioral Models..205
Simulator Internals..206
9−5−4: ALS Gates..207
The i: and o: Statements (Input and Output)...207
Signal References in the i: Statement...207
Signal References in the o: Statement..208
The t: Statement (Time Delay)...208
The Delta Timing Distribution of the t: Statement...209
The Linear Timing Distribution of the t: Statement...209
The Random Probability Function of the t: Statement...210
The Fanout Statement...211
The Load Statement..211
The Priority Statement..211
The Set Statement...212
9−5−5: ALS Functions...212
Declaring Input and Output Ports...213

 Using The Electric VLSI Design System v

Table of Contents
Other Specifications..213
Example of Function Use...213
9−5−6: ALS Models...214
The Set Statement...215

9−6−1: Introduction to Routing...216
9−6−2: Auto Stitching..216
9−6−3: Mimic Stitching..218
9−6−4: Maze Routing...219
9−6−5: River Routing...219

9−7−1: NCC Overview..220
 Improvements ...220
 Limitations ..220
 Example ..220
9−7−2: NCC Commands..221
9−7−3: NCC Preferences..221
 Operation Section ...221
 Size Checking Section ..222
 Checking All Cells Section ...222
 Reporting Progress Section..222
 Error Reporting Section...223
9−7−4: NCC Annotations...223
exportsConnectedByParent <string or regular expression>...223
skipNCC <comment>...223
flattenInstances <string or regular expression>224
notSubcircuit <comment>..224
joinGroup <cell name>...225
blackBox <comment>...225

9−8−1: Pad Frame Generation...226
9−8−2: Other Generators..229

9−9: Logical Effort..230
Logical Effort Gates..230
Logical Effort Libraries..231
Advanced Features..232
Commands..232

9−10−1: Parasitic Extraction...233
9−10−2: Node Extraction...233

9−11: Compaction..236
9−12: Silicon Compiler..237

Chapter 10: The JELIB File Format..239
10−1: JELIB File Format...239
10−2−1: Header, View, and Tool..241

Headers...241
Views..241
Tools...242
10−2−2: External References...242
10−2−3: Technologies..243
Technologies...243

10−3−1: Cells...245

vi Using The Electric VLSI Design System

Table of Contents
10−3−2: Node Instances...245
10−3−3: Arc Instances..247
10−3−4: Exports...248

10−4−1: Variables..250
10−4−2: Text Descriptors...251
10−4−3: Groups..252
10−4−4: Example..252

 Using The Electric VLSI Design System vii

viii Using The Electric VLSI Design System

Chapter 1: Introduction

1−1: Welcome

Now you have it!

A state−of−the−art computer−aided design system for VLSI circuit design.

Electric designs MOS and bipolar integrated circuits, printed−circuit−boards, or any type of circuit you
choose. It has many editing styles including layout, schematics, artwork, and architectural specifications.

A large set of tools is available including design−rule checkers, simulators, routers, layout generators, and
more.

Electric interfaces to most popular CAD specifications including VHDL, CIF and GDS II.

The most valuable aspect of Electric is its layout−constraint system, which enables top−down design by
enforcing consistency of connections.

This manual explains the concepts and commands necessary to use Electric. It begins with essential features
and builds on them to explain all aspects of the system. As with any computer system manual, the reader is
encouraged to have a machine handy and to try out each operation.

 Using The Electric VLSI Design System 1

Chapter 1: Introduction

1−2: About Electric

The About Electric... command (in menu Help) shows you the names of the Electric development team. It
also outlines you legal rights with respect to Electric.

This manual is available while running Electric. Use the User's Manual... command (in menu Help) to see
this manual (you may already be doing that).

While inside of the manual, click "Menu Help" to get help with Electric's pulldown menus. It displays a
pulldown menu inside of the manual page which mimics the real pulldown menu. Select any command from
this new menu to get help for the real pulldown menu entry.

2 Using The Electric VLSI Design System

Chapter 1: Introduction

1−3: Requirements

Electric is written in the Java programming language and is distributed as a single ".jar" file, typically called
"electric.jar". There are two variations on the ".jar" file: with or without source code. Either of these files can
run Electric, but the one with source−code is larger because it also has all of the Java code.

Electric requires Java version 1.3 or later. It has been tested with Java version 1.5.

If you extract the source code from the ".jar" file and wish to build Electric, note that there are some
Macintosh OS/X issues to consider.

Build on a Macintosh The easiest thing to do is to remove references to "AppleJavaExtensions.jar"
from the Ant script (build.xml). This package is a collection of "stubs" to replace Macintosh
functions that are unavailable elsewhere. You can also build a native "App" by running the
"mac−app" Ant script. This script makes use of files in the "packaging" folder.

•

Build on non−Macintosh, for non−Macintosh If you are building Electric on and for a
non−Macintosh platform, remove references to "AppleJavaExtensions.jar" from the Ant script
(build.xml). Also, remove the module "com.sun.electric.MacOSXInterface.java". It is sufficient to
delete this module, because Electric automatically detects its presence and is able to run without it.

•

Build on non−Macintosh, for all platforms To build Electric so that it can run on all platforms,
Macintosh and other, you will need to keep the module "com.sun.electric.MacOSXInterface.java".
However, in order to build it, you will need the stub package "AppleJavaExtensions.jar". The
package can be downloaded from Apple at
http://developer.apple.com/samplecode/AppleJavaExtensions/AppleJavaExtensions.html.

•

Memory Control

One problem with Java is that the Java Virtual Machine has a memory limit. This limit prevents programs
from growing too large, and speeds up garbage collection. However, it prevents large circuits from being
edited. If Electric runs out of memory, you can request that more be used. To do this, use "General"
preferences (in menu File / Preferences..., "General" section, "General" tab). At the bottom of the dialog is a
memory limit field. You will have to quit Electric and restart it for the new memory limit to take effect.

 Using The Electric VLSI Design System 3

http://developer.apple.com/samplecode/AppleJavaExtensions/AppleJavaExtensions.html

Chapter 1: Introduction

1−4: Setup

Running Electric varies with the different platforms:

UNIX/Linux Although you may be able to double−click on the icon from some file managers, you
can always run Electric from a shell window by typing:

java −jar electric.jar

•

Windows You can run Electric by double−clicking on the file "electric.jar". You can also run
Electric from a command window by typing:

java −jar electric.jar

•

Macintosh Macintosh computers must be running OS 10.3 or later. You can run Electric by
double−clicking on the file "electric.jar". You can also run Electric from a shell window by typing:

java −jar electric.jar

•

If the above form of the command does not work, try this alternate form:

java −classpath electric.jar com.sun.electric.Launcher

There are a number of options that can be given at the end of the command line:

−mdi force a multiple document interface style (where Electric is one big window with smaller edit
windows in it).

•

−sdi force a single document interface style (where each Electric window is separate).•
−s <script> run the <script> file through the Bean shell.•
−batch run in batch mode (no windows or other user iterface are shown).•
−version provides full version information including build date.•
−v provides brief version information.•
−help prints a list of available command options.•

4 Using The Electric VLSI Design System

Chapter 1: Introduction

1−5: Plug−Ins

Electric plug−ins are additional pieces of code that can be downloaded separately to enhance the system's
functionality. Currently, these plug−ins are available:

IRSIM The IRSIM simulator is a gate−level simulator from Stanford University. Although originally
written in C, it was translated to Java so that it could plug into Electric. The Electric version is
available from Static Free Software at www.staticfreesoft.com/electricIRSIM−8.02.jar.

•

Bean Shell The Bean Shell is used to do parameter evaluation in Electric. Advanced operations that
make use of cell parameters will need this plug−in. The Bean Shell is available from
www.beanshell.org.

•

3D The 3D facility lets you view an integrated circuit in three−dimensions. Although most of the
viewer is included with Electric, there is one extra part that can be installed (a 3D axis controller).
Also, none of the 3D display can function unless you have installed the Java3D package. The Java3D
package is available from the Java Community Site, www.j3d.org. The 3D axis controller is available
from Static Free Software at www.staticfreesoft.com/electricJava3D−8.02.jar

•

Animation To enable 3D animation, you need the 3D facility (described above) as well as the Java
Media Framework (JMF) and the animation code. The Java Media Framework is available from Sun
Microsystems at java.sun.com/products/java−media/jmf and the animation code is available from
Static Free Software at www.staticfreesoft.com/electricJMF−8.02.jar.

•

To attach a plugin, it must be invoked from the command line by adding it to the classpath. For example, to
add the beanshell (a file named "bsh−2.0b1.jar"), type:

java −classpath electric.jar:bsh−2.0b1.jar com.sun.electric.Launcher

On Windows, you must use the ";" to separate jar files, and you might also have to quote the collection since
";" separates commands:

java −classpath "electric.jar;bsh−2.0b1.jar" com.sun.electric.Launcher

Note that you must explicitly mention the main Electric class (com.sun.electric.Launcher) when using
plug−ins since all of the jar files are grouped together as the "classpath".

 Using The Electric VLSI Design System 5

http://www.staticfreesoft.com
http://www.staticfreesoft.com/electricIRSIM-8.02.jar
http://www.beanshell.org
http://www.j3d.org
http://www.staticfreesoft.com
http://www.staticfreesoft.com/electricJava3D-8.02.jar
http://www.sun.com
http://www.sun.com
http://java.sun.com/products/java-media/jmf/
http://www.staticfreesoft.com
http://www.staticfreesoft.com/electricJMF-8.02.jar

Chapter 1: Introduction

1−6: Fundamental
Concepts

MOST CAD SYSTEMS use two methods to do circuit design: connectivity and geometry.

The connectivity approach is used by every Schematic design system: you place components and
draw connecting wires. The components remain connected, even when they move.

•

The geometry approach is used by most Integrated Circuit (IC) layout systems: rectangles of "paint"
are laid down on different layers to form the masks for chip fabrication.

•

ELECTRIC IS DIFFERENT because it uses connectivity for all design, even IC layout. This means that you
place components (MOS transistors, contacts, etc.) and draw wires (metal−2, polysilicon, etc.) to connect
them. The screen shows the true geometry, but it knows the connectivity too.

The advantages of connectivity−based IC layout are many:

No node extraction. Node extraction is not a separate, error−prone step. Instead, the connectivity is
part of the layout description and is instantly available. This speeds up all network−oriented
operations, including simulation, layout−versus−schematic (LVS), and electrical rules checkers.

•

No geometry errors. Complex components are no longer composed of unrelated pieces of geometry
that can be moved independently. In paint systems, you can accidentally move the gate geometry
away from a transistor, thus deleting the transistor. In Electric, the transistor is a single component,
and cannot be accidentally destroyed.

•

More powerful editing. Browsing the circuit is more powerful because the editor can show the
entire network whenever part of it is selected. Also, Electric combines the connectivity with a layout
constraint system to give the editor powerful manipulation tools. These tools keep the design
well−connected, even as the circuit is modified on different levels of hierarchy.

•

Tools are smarter when they can use connectivity information. For example, the Design Rule
checker knows when the layout is connected and uses different spacing rules.

•

Simpler design process. When doing schematics and layout at the same time, getting a correct LVS
typically involves many steps of design rule cleaning. This is because node extraction must be done
to obtain the connectivity of the IC layout, and node extractors cannot work when the design rules are
bad. So, each time LVS problems are found, the layout must be fixed and made DRC clean again.
Since Electric can extract connectivity for LVS without having perfect design rules, the first step is to
get the layout and schematics to match. Then the design rules can be cleaned−up without fear of
losing the LVS match.

•

Common user interface. One CAD system, with a single user interface, can be used to do both IC
layout and schematics. Electric tightly integrates the process of drawing separate schematics and has
an LVS tool to compare them.

•

6 Using The Electric VLSI Design System

The disadvantages of connectivity−based IC layout are also known:

It is different from all the rest and requires retraining. This is true, but many have converted and
found it worthwhile. Users who are familiar with paint−based IC layout systems typically have a
harder time learning Electric than those with no previous IC design experience.

•

Requires extra work on the user's part to enter the connectivity as well as the geometry. While this
may be true in the initial phases of design, it is not true overall. This is because the use of
connectivity, early in the design, helps the system to find problems later on. In addition, Electric has
many power tools for automatically handling connectivity.

•

Design is not WYSIWYG (what−you−see−is−what−you−get) because objects that touch on the
screen may or may not be truly connected. Electric has many tools to ensure that the connectivity has
been properly constructed.

•

The way that Electric handles all types of
circuit design is by viewing it as a
collection of nodes and arcs, woven into a
network. The nodes are electrical
components such as transistors, contacts,
and logic gates. Arcs are simply wires that
connect two components. Ports are the
connection sites on nodes where the wires
connect.

In the above example, the transistor node has three pieces of geometry on different layers: polysilicon, active,
and well. This node can be scaled, rotated, and otherwise manipulated without concern for specific layer
sizes. This is because rules for drawing the node have been coded in a technology , which describes nodes
and arcs in terms of specific layers.

Because Electric uses nodes and arcs for design, it is important that they be used to make all of the relevant
connections. Although layout may appear to be connected when two components touch, a wire must still be
used to indicate the connectivity to Electric. This requires a bit more effort when designing a circuit, but that
effort is paid back in the many ways that Electric understands your circuit.

Besides creating meaningful electrical networks, arcs which form wires in Electric can also hold constraints.
A constraint helps to control geometric changes, for example, the rigid constraint holds two components in a
fixed configuration while the rest of the circuit stretches. These constraints propagate through the circuit,
even across hierarchical levels of design, so that very complex circuits can be intelligently manipulated.

A cell is a collection of these nodes and arcs, forming a circuit description. There can be different views of a
cell, such as the schematic, layout, icon, etc. Also, each view of a cell can have different versions, forming a
history of design. Multiple views and versions of a cell are organized into Cell groups.

For example, a clock cell may consist of a schematic view and a layout view. The schematic view may have
two versions: 1 (older) and 2 (newer). In such a situation, the clock cell group contains 3 cells: the layout
view called "clock{lay}", the current schematic view called "clock{sch}", and the older schematic view
called "clock;1{sch}".

Hierarchy is implemented by placing instances of one cell into another. When this is done, the cell that is
placed is considered to be lower in the hierarchy, and the cell where it is placed is higher. Therefore, the
notion of going down the hierarchy implies moving into a cell instance, and the notion of going up the
hierarchy implies popping out to where the cell is placed. Note that cell instances are actually nodes, just like
the primitive transistors and gates. By defining exports inside of a cell, these become the connection sites, or

 Using The Electric VLSI Design System 7

ports, on instances of that cell.

A collection of cells forms a library, and is treated on disk as a single file. Because the entire library is
handled as a single entity, it can contain a complete hierarchy of cells. Any cell in the library can contain
instances of other cells. A complete circuit can be stored in a single library, or it can be broken up into
multiple libraries.

8 Using The Electric VLSI Design System

Chapter 1: Introduction

1−7: The Display

The Electric display varies from platform to platform. The image below shows a typical display with some
essential features.

The editing window is the largest window that initially says "No cell in this window" (this indicates that no
circuit is being displayed in that window). You can create multiple editing windows to see different parts of
the design.

 Using The Electric VLSI Design System 9

The left side of the edit window is the side
bar that has 3 tabbed sections, the components
menu, the cell explorer, and the layers.

The cell explorer lets you examine the hierarchy,
system activity, and error messages (see Section
4−8 for more).

The components menu shows a list of nodes
(blue border) and arcs (red border) that can be
used in design. The arrangement of the entries in
the components menu varies with the different
technologies. For MOS technologies, see Section
7−4−2, for schematics, see Section 7−5−1, and
for artwork, see Section 7−6−1.

The top three entries in the components menu let
you place pure−layer nodes (see Section
6−10−1), miscellaneous objects (see Section
7−6−3) and instances of cells (see Section 3−3).

The layers tab lets you control which parts of the
display are visible. See Section 4−5 for more on
layer visibility.

Below the edit window is the messages window,
which is used for all textual communication.

Above the edit windows is a pulldown
menu along the top with command options. On
some operating systems, the pulldown menu is
part of the edit window, and on others it is
separate. Below the pulldown menu is a tool
bar which has buttons for common functions.

Finally, the status area gives useful information
about the design state. It appears along the
bottom of the editing window or (in this
example) at the bottom of the screen. The status
area shows cursor coordinates, and can show
global coordinates when traversing the
hierarchy. To control the display of global
coordinate values, use the "General" preferences
(in menu File / Preferences..., "General"
section, "General" tab), and change the "Show
hierarchical cursor coordinates in status bar"
checkbox.

10 Using The Electric VLSI Design System

#chap07-04-02
#chap07-04-02
#chap07-06-03
#chap07-06-03

Chapter 1: Introduction

1−8: The Mouse

Electric makes use of only two mouse buttons: left and right. On systems with three−button mice, the middle
button is not used. On Macintosh systems with only one button, the right button is obtained by holding the
Command key when clicking.

Modifier Button Action

Left Mouse Click Select

Left Mouse Drag Move selected objects

Left Mouse Double
Click

Get Info

CTRL Left Mouse Click
Cycle through selected
objects

SHIFT Left Mouse Click Invert selection

CTRL + SHIFT Left Mouse Click
Cycle through objects to
Invert

Right Mouse Click Draw or Connect Wire

SHIFT Right Mouse Click Zoom Out

SHIFT Right Mouse Drag Zoom In

CTRL + SHIFT Right Mouse Drag Draw Box

Wheel Mouse Up/DownScroll Up/Down

SHIFT Wheel Mouse Up/DownScroll Right/Left

By combining special keystrokes with the mouse functions, advanced layout operations can be done:

Switch Wiring Targets Hit Space while holding the Right mouse button to switch between possible
wiring targets under the mouse.

•

Switch Layers Hit a number between 1−6 to switch layout layers. Additionally, if you have a port
highlighted that can connect to the new layer, a contact cut will be created at that point and connected
to the port.

•

Abort Type ESCAPE to abort the current operation.•

 Using The Electric VLSI Design System 11

Chapter 1: Introduction

1−9: The Keyboard

Many common commands
can be invoked by typing
"quick keys" for them. These
quick keys are shown in the
pulldown menus next to the
item. For example, the New
Cell... command (in menu
Cell) has the quick key
"Control−N". On the
Macintosh, the menu shows
" N", indicating that you
must hold the command key
while typing the "N"; on
Windows and UNIX
systems, the menu shows
"Ctrl−N", indicating that you
must hold the Control key
while typing "N". There are
also unshifted quick keys
(for example, the letter "n"
runs the Place Cell
Instance command).

To change the bindings of quick keys, use the "Key Bindings" preferences (in menu File / Preferences...,
"Tools" section, "Key Bindings" tab). The dialog shows the hierarchical structure of the pulldown menus on
the top, and lets you add or remove key bindings in the bottom area.

You can remove a quick key binding with the "Remove" button, and you can add a quick key binding with
the "Add" button. The "Reset" button restores default quick key bindings. Change key bindings with caution,
because it customizes your user interface, making it more difficult for other users to work at your station.

You can get to EVERY menu command with key sequences. The keys to use are underlined in the menus.
For example, the File menu has the "F" underlined, and the Print... command of that menu has the "P"
underlined. This means that you can hold the Alt key and type "FP" to issue the print command.

12 Using The Electric VLSI Design System

Chapter 1: Introduction

1−10−1: IC Layout
Example: Make a Cell

This section takes you through the design of some simple IC layout.

Before you can place any IC layout,
the editing window must have a cell
in it. Use the New Cell... command
(in menu Cell). This will show a
dialog that lets you type a new cell
name. Type the name ("MyCircuit" is
used here) and click OK. The editing
window will no longer have the "No
cell in this window" message, and
circuitry may now be created.

After creating a cell, look at the cell explorer (in
the status bar on the left side of the edit window).
Under the "LIBRARIES" icon, you will see the
list of libraries (currently only one called
"noname"). If you open that library's icon, you
will see the cells in the library (currently only
"MyCircuit").

1−10−2: IC Layout Example: Create a Node

Layout is placed by selecting nodes from the side bar's components menu, and then wiring them together.
This example shows two nodes that have been created. This was done by clicking on the appropriate
component menu entry, and then clicking again in the editing window to place that node. After clicking on
the component menu entry, the cursor changes to a pointing hand to indicate that you must select a location
for the node. When placing the node, if you press the button and do not release it, you will see an outline of
the new node, which you can drag to its proper location before releasing the button.

 Using The Electric VLSI Design System 13

In this example, the top node is called
Metal−1−Polysilicon−1−Con (a contact between
metal layer 1 and polysilicon layer 1, found in the
fifth entry from the bottom in the right column of the
component menu). The node on the bottom is called
N−Transistor (lower−right entry of the component
menu). Both of these nodes are from the MOSIS
CMOS technology (which is listed as "mocmos" in
the status area).

1−10−3: IC Layout Example: Highlighting

A highlighted node has two selected areas: the node
and a port on that node. Note that the transistor is
highlighted in the previous example, and the contact
is highlighted in the example here. The larger
selected area covers the node, and it surrounds the
"important" part (for example, on the Transistor, it
covers only the overlap area, excluding the tabs of
active and gate on the four sides). The smaller
selected area is the currently highlighted port (there
are four possible ports on the transistor, but only one
on the contact).

To highlight a node, use the left button. The node, and the closest port to the cursor, will be selected. After
highlighting, you can hold the mouse button down and drag the highlighted object to a new location. If
nothing is under the cursor when the selection button is pushed, you may drag the cursor while the button
remains down to define an area in which all objects will be selected.

Another way to affect what is highlighted is to use the shift−left button. This button causes object
highlighting to be reversed (highlighted objects become unhighlighted and unhighlighted objects are
highlighted).

The shape of the highlighted port is important. Ports are the sites of arc connections, so the end point of the
arc must fall inside this port area. Ports may be rectangles, lines, single points (displayed as a "+"), or any
arbitrary shape. For example, when the active tabs of a transistor are highlighted, the port is shown as a line.

14 Using The Electric VLSI Design System

1−10−4: IC Layout Example: Make an Arc

To wire a component, select it, move
the cursor away from the component,
and use the right button. A wire will be
created that runs from the component to
the location of the cursor. Note that the
wire is a fixed−angle wire which means
that it will be drawn along a horizontal
or vertical path from the originating
node.

To see where the wire will end, click but do not release the button and drag the outline of the wire's
terminating node (a pin) until it is in the proper location. It is highly recommended that you do all wiring
operations this way, because wiring is quite complex and can follow many different paths.

Once a wire has been created, the other end is highlighted (see above). This is the highlighting of a pin node
that was created to hold the other end of the arc. Because it is a node, the right button can be used again to
continue the wire to a new location. If, during wiring, the cursor is dragged on top of an existing component,
the wire will attach to that component.

To remove wires or components, you can issue the Undo command (in menu Edit) to remove the last created
object. Alternatively, you can select the component and use the Erase command (in menu Edit).

1−10−5: IC Layout Example: Constraints

Once components are wired, moving them will also move their connecting wires. Notice that the wires stretch
and move to maintain the connections. What actually happens is that the programmable constraint system
follows instructions stored on the wires, and reacts to node changes. The default wire is fixed−angle and
slidable, so the letters "FS" are shown when the wire is highlighted.

Select a wire and issue the Rigid command (in menu Edit / Arc). The letters change to "R" on the arc and the
wire no longer stretches when nodes move. Find another arc and issue the Not Fixed−angle command. Now
observe the effects of an unconstrained arc as its neighboring nodes move. These arc constraints can be
reversed with the Rigid and Fixed−angle commands. See Section 5−2−1 for more on these constraints.

 Using The Electric VLSI Design System 15

1−10−6: IC Layout Example: Hierarchy

Electric supports hierarchy by
allowing you to place instances of
another cell. These instances are
nodes, just like the simpler ones in
the component menu. To see
hierarchy in action, create a new cell
with the New Cell... command (in
menu Cell). Make sure the "Make
new window" option is checked in
the dialog. Then type the new cell
name ("Higher" is used in the
example here).

A new (empty) cell will appear in a separate window. Try creating a few simple nodes in this new window
(place a contact or two).

Now place an instance of the other cell
by using the Place Cell
Instance... command (in menu Cell).
You can also click the "Cell" entry in
the component menu. You will be
given a list of cells to create: select the
one that is in the OTHER window (the
one called "MyCircuit" in this
example). Then click in the newer cell
to create the instance.

16 Using The Electric VLSI Design System

The box that appears is a node in the same sense

as the contacts and transistors: it can be moved,
wired, and so on. In addition, because the node
contains subcomponents, you can see its
contents by selecting it and using the One Level
Down command (in menu Cell / Expand Cell
Instances, or click on the opened−eye button in
the tool bar). Note that if the objects in a cell no
longer fit in the display window, use the Fill
Display command (in menu Window).

1−10−7: IC Layout Example: Exports

Before you can attach wires to the instance node, there must be connection sites, or ports on that node.
Primitive nodes such as contacts and transistors already have their ports established, but you must explicitly
create ports for cell instances.

This is done by creating
exports inside the cell definition.
Move the cursor to the window
with the lower−level cell
("MyCircuit") and select the
contact node. Then issue the
Create Export... command (in
menu Export). You will be
prompted for an export name and
its characteristic (the
characteristics can be ignored for
now).

This takes the port on
the contact node and
exports it to the outside
world. Its name will be
visible on the
unexpanded instance
node in the higher−level
cell.

You can now connect
wires to that node in
just the same way as
you wired the contact.

1−10−8: IC Layout Example: Final Points

Some final commands that should be mentioned in this introductory example are the Save Library and the
Quit commands which can be found in the File menu. They do the obvious things.

 Using The Electric VLSI Design System 17

Chapter 1: Introduction

1−11−1: Schematics
Example: Make a Cell

This section takes you through the design of some simple schematics.

Before you can place any schematics,
the editing window must have a cell
in it. Use the New Cell... command
(in menu Cell). Type the name
("MyCircuit" is used here) and select
the "schematic" view.

The editing window will no longer have the "No cell in this window" message, and circuitry may now be
created. Note that the component menu on the left will change to show schematics primitives. Also, the
Schematic technology is now listed in the status area at the bottom of the screen.

After creating a cell, look at the cell explorer (in
the status bar on the left side of the edit window).
In the "LIBRARIES" icon, you will see the list of
libraries (currently only one called "noname"). If
you open that library's icon, you will see the cells
in the library (currently only "MyCircuit").

18 Using The Electric VLSI Design System

1−11−2: Schematics Example: Make a Node

Schematic nodes are placed by selecting
them from the side bar's components menu
(on the left), and then wiring them together.
This example shows two nodes that have
been created. This was done by clicking on
the appropriate component menu entry, and
then clicking again in the editing window to
place that node.

After clicking on the component menu entry, the cursor changes to a pointing hand to indicate that you must
select a location for the node. When placing the node, if you press the button and do not release it, you will
see an outline of the new node, which you can drag to its proper location before releasing the button.

In this example, the top node is called a Buffer (found on the right side of the component menu in the third
entry from the top). The node on the bottom is called an And (top entry on the right).

1−11−3: Schematics Example: Highlighting

A highlighted node has two selected parts: the
node and a port on that node. Note that the
And is highlighted in the previous example,
and the Buffer is highlighted in the example
here. The little "+" sign is the currently
highlighted port (there are two possible ports
on these nodes, on the input and the output).

To highlight a node, use the left button. The node, and the closest port to the cursor, will be selected. After
highlighting, you can hold the mouse button down and drag the highlighted object to a new location. If
nothing is under the cursor when the selection button is pushed, you may drag the cursor while the button
remains down to define an area in which all objects will be selected.

Another way to affect what is highlighted is to use the shift−left button. This button causes object
highlighting to be reversed (highlighted objects become unhighlighted and unhighlighted objects are
highlighted).

The shape of the highlighted port is important. Ports are the sites of arc connections, so the end point of the
arc must fall inside this port area. Ports may be rectangles, lines, single points (displayed as a "+"), or any
arbitrary shape. For example, the entire left side of the And gate is the input port and so its highlighting is a
line.

 Using The Electric VLSI Design System 19

1−11−4: Schematics Example: Make an Arc

To wire a component, select it, move the
cursor away from the component, and use the
right button. If you click the right button and
hold it without releasing, then you can move
around and see where the wire will go when
you do release.

A wire will be created that runs from the component to the location of the cursor. Note that the wire is a
fixed−angle wire which means that it will be drawn along a horizontal, vertical, or 45−degree path from the
originating node. To see where the wire will end, click but do not release the button and drag the outline of
the wire's terminating node (a pin) until it is in the proper location. It is highly recommended that you do all
wiring operations this way, because wiring is quite complex and can follow many different paths.

Once a wire has been created, the other end is highlighted (see above). This is the highlighting of a pin node
that was created to hold the other end of the arc. Because it is a node, the right button can be used again to
continue the wire to a new location. If, while wiring, the dragged location is over an existing component, the
wire will attach to that component.

To remove wires or nodes, you can issue the Undo command (in menu Edit) to remove the last created
object. Alternatively, you can select the component and use the Erase command (in menu Edit).

1−11−5: Schematics Example: Multi−Input gates and Negation

One aspect of the And, Or, and Xor gates that you will notice is that their left side (the input side) can accept
any number of wires. To see this in action, place one of these components in the cell. Then repeatedly select
its left side and use the right button to draw wires out of it. Each wire will connect at a different location in
the input port, and once the side fills with arcs, it will automatically grow to fit more. Note that the vertical
cursor location along the input side is used to select the position that will be used when a new wire is added.

To negate an input or output of a digital gate,
select the port or the arc and use the Toggle
Port Negation command (in menu Edit /
Technology Specific). With this facility, you
can construct arbitrary gate configurations.

1−11−6: Schematics Example: Constraints

Once components are wired, moving them will also move their connecting wires. Notice that the wires stretch
and move to maintain the connections. What actually happens is that the programmable constraint system
follows instructions stored on the wires, and reacts to component changes. The default wire is fixed−angle, so
the letter "F" is shown when the wire is highlighted.

20 Using The Electric VLSI Design System

Select a wire and issue the Rigid command (in menu Edit / Arc). The letter changes to "R" on the arc and the
wire no longer stretches when components move. Find another arc and issue the Not Fixed−angle command.
Now observe the effects of an unconstrained arc as its neighboring nodes move. These arc constraints can be
reversed with the Rigid and Fixed−angle commands. See Section 5−2−1 for more on these constraints.

1−11−7: Schematics Example: Hierarchy and Icons

Electric supports hierarchy by allowing you to create icons for a schematic and place them in another cell.
Before creating an icon, all connection points to the schematic should be defined.

To define connection points for a
schematic, you must create
exports on the schematic. To see
an example of this, select the
output port of the Buffer node and
issue the Create
Export... command (in menu
Export). You will be prompted
for an export name and its
characteristics (set the
characteristics to "output").

The output port on the buffer node is
now exported to the outside world.
Run a wire from the input side of the
And node and export the pin at the end
of the wire. Your circuit should look
like this.

You can now make an icon for this circuit
by using the Make Icon command (in
menu View). The icon will be placed in
your circuit (you may have to move it
away from the rest of the circuitry). The
result will look like this.

 Using The Electric VLSI Design System 21

To test this icon in a circuit, create a

new cell in which to place instances
of the icon. Use the New
Cell... command (in menu Cell).
Type the new cell name ("Higher" is
used in the example here) and make
sure its view is "schematic".

A new (empty) cell will appear in a
separate window. Try creating a few
simple nodes in this new window
(place a gate or two).

Now place an instance of the other cell
by using the Place Cell
Instance... command (in menu Cell).
You can also click the "Cell" entry in
the component menu. You will be
given a list of cells to create: select the
one that is in the OTHER window (the
one called "MyCircuit{ic}" in this
example). Then click in the newer cell
to create the instance.

The icon that appears is a node in the same sense as the
Buffer and And gate: it can be moved, wired, and so on.
In addition, because the node contains subcomponents,
you can see its contents by selecting it and using the
Down Hierarchy command (in menu Cell). Note that if
the objects in a cell no longer fit in the display window,
use the Fill Window command (in menu Window).

1−11−8: Schematics Example: Final Points

Some final commands that should be mentioned in this introductory example are the Save Library and the
Quit commands which can be found in the File menu. They do the obvious things.

22 Using The Electric VLSI Design System

Chapter 2: Basic Editing

2−1−1: Selecting
Nodes and Arcs

Electric is a noun/verb system, meaning that all commands work by first selecting something (the noun) and
then doing an operation (the verb). For this reason, selection is important.

Selection (and movement, wiring, and zooming) are done
in "selection" mode, which is the default mode. This
mode is indicated by having the "selection" icon
highlighted in the tool bar.

Selection is done with clicks of the left button. Individual nodes and arcs are selected by clicking over them.
You can tell in advance what will be selected by the button click, because the next object to be selected is
shown in blue. This advance selection is called "mouse−over highlighting" and can be disabled (see section
2−1−4). Once selected, objects are highlighted on the screen. If you use the shift−left button, unhighlighted
nodes and arcs are added to the selection, but objects that are already highlighted become deselected.

There are often multiple objects under the cursor (for example, in the area where an arc overlaps a node). To
get the object you want, hold the control key while clicking. The control−left button cycles through all
objects under the cursor.

The notion of toggling selection (shift−left) and cycling through what is under the cursor (control−left) can be
combined. If there are multiple objects under the cursor, and you are trying to toggle the selection, use the
control−shift−left button to cycle through them .

To select an object by its name, use the Select
Object... command (in menu Edit / Selection).
The resulting dialog lets you select nodes, arcs,
exports, or networks in the cell.

To select everything in the cell, use the Select
All command (in menu Edit / Selection). To
deselect everything, use Select Nothing.

To select everything in the cell that is the same
as the currently selected objects, use the Select
All Like This command (in menu Edit /
Selection). The Deselect All Arcs command
deselects all selected arcs. This is useful when
you wish to select a set of nodes, but you have
selected the entire area, including nodes and
arcs.

 Using The Electric VLSI Design System 23

#chap02-01-04
#chap02-01-04

2−1−2: Selection Appearance

Highlighted objects have a box
drawn around them. In some cases,
the object extends beyond the box,
but the box encloses the essential
part of the object. For example,
MOS transistors are highlighted
where the two materials cross,
even though the materials extend
on all four sides. Also, CMOS
active arcs have implants that
surround them, but the highlight
covers only the central active part.

Besides the basic box, there will be other things drawn when an object is highlighted. Highlighted arcs have
their constraint characteristics displayed. The example above shows an arc that is both fixed−angle ("F") and
slidable ("S"). The letter "R" is used for rigid arcs, and an "X" appears when none of these constraints apply.
See Section 5−1 for more information on arc constraints.

When nodes are selected, a port is also highlighted. The port that is highlighted is the one closest to the cursor
when the node is selected. If the port is a single point, you see a "+" at the port. If the port is larger than a
single point, it is shown as a line or rectangle.

Highlighted nodes will also show the
entire network that extends out of the
highlighted port. Arcs in that network
will be drawn with dashed lines, and
nodes in that network will be
indicated with dots. The example
here shows the highlighting of a pin
node (in the upper−right) with a
single−point port ("+") which is
connected to a contact and a
transistor.

It is important to understand that Electric is not exactly a WYSIWYG editor
(what−you−see−is−what−you−get). Nodes that are touching on the screen may not actually be connected if
there are no arcs joining them. The best way to ensure that the circuit is correct is to highlight a node and see
the extent of the connections on it.

2−1−3: Unusual Selection: Areas and Text

Besides highlighting nodes and arcs, Electric can also highlight an arbitrary rectangular area. The notion of a
highlighted area, as opposed to a highlighted object, is used in some commands, and it generally implies
highlighting of everything in the area.

24 Using The Electric VLSI Design System

There are two ways to highlight an area. If you click the left button where there is no object, and hold it down
while dragging over objects, all of those objects will be highlighted.

To more precisely define a highlighted area,
switch to area selection (as opposed to object
selection) with the Area command (in menu
Edit / Modes / Select, or click on the "Area
Selection" icon in the tool bar).

Once in area selection mode, each click and drag of the left button leaves the highlight rectangle on the screen
exactly as it was drawn. You can convert this selection to a set of actual nodes and arcs with the Enclosed
Objects command (in menu Edit / Selection).

Selecting Text

Highlighted text appears as an "X" over the letters. However, text is a special case, so it will not be covered
until later (section 6−8−2). For now, if you highlight some text, it is best to click again and select something
else.

2−1−4: Controlling Selection

Once a selection is made, you can save it with the Push Selection command (in menu Edit / Selection). The
highlighting is not changed, but it is saved on a stack. To restore this selection at a later time, use the Pop
Selection command.

There are some selection
preferences that can be set
with "Selection" preferences
(in menu File /
Preferences..., "General"
section, "Selection" tab).
"Easy selection" controls
whether objects can be
selected with simple clicks,
or whether they require
extra effort to select. You
can request that all cell
instances be hard to select
and that all annotation text
be hard to select. See the
(next section) for more on
this.

The "Dragging must enclose
entire object" requests that
area−selection completely
enclose an object in order to
select it. The default is that
any object touching the area
is selected.

 Using The Electric VLSI Design System 25

#chap06-08-02
#chap02-01-05

To prevent accidental moving of an object after selecting it, object movement is disabled for a short time after
the selection click. This delay can be controlled.

When the cursor roams over a circuit, it shows a "preview" of what will be selected by the next click. The
advance preview is shown in a different color than the actual highlighting (initially blue, but this can be
changed with the "Color" Preferences, see Section 4−6−2). This feature is called "mouse−over highlighting".
If you do not want to see this preview, uncheck "Enable Mouse−over highlighting".

2−1−5: Easy and Hard Selection

In a busy circuit, many objects may overlap, causing confusion when selecting. To simplify selection, objects
can be marked so that they are no longer easy−to−select, which means that standard selection does not work
on them.

To select hard−to−select objects, use the Special
Select command (in menu Edit / Modes / Select).
You can also click on the "Special Select" tool bar
button to enable "special selection".

Ease of selection extends to more than just nodes and arcs. There are four "classes" of objects that can be
selected:

Basic objects (all arcs, primitive nodes, and port names) •
Cell instances •
Annotation text (names and other text placed on nodes and arcs) •
Instance text (an unexpanded cell instance's name) •

By default, the first three classes are easy−to−select, and instance text is hard−to−select. If you uncheck
"Easy selection of cell instances" in the selection preferences dialog, then cell instances become
hard−to−select. If you uncheck "Easy selection of annotation text" in the selection preferences dialog, then
annotation text becomes hard−to−select.

Although all nodes and arcs are typically easy−to−select, you can control them individually by unchecking
the "Easy to Select" field in their properties dialog (use the Object Properties... command in menu Edit /
Properties). If multiple objects are selected, the Object Properties... dialog has a popup in the lower−right
for changing their selection difficulty.

Special commands exist in the Selection menu for dealing with easy−to−select nodes and arcs. You can
select all of the easy−to−select objects in the current cell with the Select All Easy command. Similarly, you
can select those that are not easy−to−select with the Select All Hard command. To change the ease of
selection for a set of objects, highlight them and use either Make Selected Easy or Make Selected Hard.

26 Using The Electric VLSI Design System

#chap04-06-02

Chapter 2: Basic Editing

2−2−1: Node Creation

Node creation is done by selecting a node from the component menu in the side bar (on the left). The nodes
are outlined in blue. After clicking on one of these nodes, click in the edit window to place the node.

The location of the cursor is aligned to the nearest grid unit. This adjustment can be controlled with the
"Grid" preferences (in menu File / Preferences..., "Display" section, "Grid" tab).

When placing a node, the cursor points to the anchor point of the newly created node. This is the center (for
primitives) or the location of the cell−center (for cell instances). Cell instances can change their anchor point
by moving the Cell−Center node inside of their layout (see Section 3−3).

Besides basic components, there are special entries in the component menu for creation of additional nodes:

The "Cell" button displays a list of cell instances that can be created (see Section 3−3).•
The "Pure" button (only available in layout technologies) lets you place pure−layer nodes (see
Section 6−10−1).

•

The "Spice" button (only available in schematics) lets you place Spice primitives (see Section 9−4−3).•
The "Misc" button has a collection of special objects that can be created.•

These objects can be created with the "Misc"
button:

Cell Instance brings up a dialog to
select an instance to place (see Section
3−3).

•

Annotation Text places a node that
contains only text (see Section 6−8−1).

•

Layout Text... brings up a dialog to
create text from layout nodes (see
Section 6−10−3).

•

Annular Ring... brings up a dialog to
create circular shapes (see Section
6−10−3).

•

Cell Center places a node that defines
the origin of the cell (see Section 3−3).

•

Essential Bounds places a node that
defines the corners of the cell's essential
bounds (see Section 7−6−3).

•

Spice Code places a text−only node that will be inserted into Spice decks (see Section 9−4−3).•
Verilog Code places a text−only node that will be inserted into the code area of Verilog decks (see
Section 9−4−2).

•

Verilog Declaration places a text−only node that will be inserted into the declaration area of Verilog
decks (see Section 9−4−2).

•

Simulation Probe places a node that can be used to display simulation results (see Section 4−12−1).•

 Using The Electric VLSI Design System 27

#chap09-04-03
#chap06-10-03
#chap06-10-03
#chap06-10-03
#chap07-06-03
#chap09-04-03
#chap09-04-02
#chap09-04-02

DRC Exclusion places a node that covers DRC errors and causes them to be ignored (see Section
9−2−5).

•

Invisible Pin places an invisible−pin node (see Section 7−6−3).•
Universal Pin places an universal−pin node (see Section 7−6−3).•
Unrouted Pin places an unrouted−pin node (see Section 7−6−3).•

2−2−2: Arc Creation

As the introductory example showed, arcs are created by clicking the right button. This can actually function
in two different ways, depending on what is highlighted.

If one node is highlighted, segment wiring is done, in which an arc is drawn from the highlighted node to the
location of the cursor. If there is nothing at that location, a pin is created, and it is left highlighted. Using the
right button again runs an arc from the pin to another location. By clicking and holding the right button, you
can see the path that the new arc will follow.

In general, all wiring operations should be done by clicking and holding the right button, then moving the
cursor until the intended wiring is shown, and finally releasing. This is recommended because wiring is quite
complex and can follow many different paths.

If you type a digit key while the right button is pressed, it changes the wiring layer by inserting contacts to
that layer of metal. For example, if you are running a metal−1 wire, and type "3" during the wiring, then two
contacts will be added (metal−1−metal−2 and metal−2−metal−3) to make the wire run in metal−3.

If the cursor is over another object when the right button is released, the new wire attaches to that object. If
there are multiple objects under the cursor, press the space bar (while the right button is pressed) to cycle
through the possible endpoints (including the possibility of connecting to none of them).

The other way that the creation button can operate is two−point wiring, in which two nodes are highlighted
and one or more arcs are created to connect them. Highlighting of these two nodes is done by clicking the
left button over the first one, and then using the shift−left button on the second. Note that if the second node
is obscured by other objects, you can cycle through the objects under the cursor with the
control−shift−left button. Once the two nodes are highlighted, use the right button to wire them together.
Note that the highlighted ports on the selected nodes are important: arcs will run between them, so they must
be compatible in their wiring capabilities.

Two−point wire creation first attempts to run a single arc. Generally, this can happen only if the ports are
lined up accurately. Failing single arc placement, an attempt is made to connect with two arcs and an
intermediate node. These two arcs can bend in one of two directions, determined by the location of the cursor.

In addition to
running an arc
between two nodes,
you can also use
arcs as the starting
or ending point of
arc creation. If it is
sensible, the
creation command
actually uses one of
the nodes on an end

28 Using The Electric VLSI Design System

#chap09-02-05
#chap09-02-05
#chap07-06-03
#chap07-06-03
#chap07-06-03

of the selected arc.

However, if the connection falls inside the arc, it is split and a new node is created to make a "T" connection.

Electric will allow you to connect two nodes or arcs as long as there is some way in the current technology
for those objects to be connected. For example, if connecting between metal−1−pin and a metal−3−pin in the
MOSIS CMOS technology, Electric will place metal−1−metal−2 and metal−2−metal−3 contact cuts down,
and wire between all four nodes. When vias are inserted, they are placed closest to the "destination" node (or
farthest from the original node).

As mentioned in Section 1−8, pressing the number keys for a valid layer switches to that layer. If a node is
highlighted, it will route to that layer from the node, creating contacts as necessary.

2−2−3: Special Cases

The default width is set by the "New Arcs" preferences (in menu File / Preferences..., "General" section,
"New Arcs" tab). If there are other arcs of this type already connected to the new one, and they are wider than
normal, then the new arc will use that width.

Note that all arcs overlap their endpoint by half of their width, so very wide arcs may overlap their
destination with too much geometry. You can turn off this overlap by using the Toggle End Extension of
Head and Toggle End Extension of Tail commands (in menu Edit / Arc). See Section 5−4−3 for more on
end extension.

An unusual circuit creation command is the
Insert Jog In Arc command (in menu Edit /
Arc). This command inserts a jog in the
highlighted arc by replacing it with three new
arcs. Two of the new arcs run to the location of
the cursor, and the third arc is perpendicular to
them, connecting the ends at the cursor location
(initially it has zero length). Once the jog is
inserted, either half of the arc may be moved
without affecting the other half, and the
perpendicular arc will keep the circuit connected.

Beginning users often leave many extra pins in their circuits. With the Cleanup Pins command (in menu
Edit / Cleanup Cell), these pins are automatically removed from your circuit, leaving a cleaner network. The
command does other pin organizations, such as making sure that text on these pins is located correctly,
identifying zero−sized pins, and identifying oversized pins. The Cleanup Pins Everywhere command does
this function for all cells at once.

 Using The Electric VLSI Design System 29

#chap05-04-03

Chapter 2: Basic Editing

2−3: Circuit Deletion

To remove circuitry, select nodes and/or arcs and use the Erase command (in menu Edit). A keyboard
shortcut for this is the Delete key. If there is a highlighted area rather than a highlighted object, everything in
the area is erased.

Note that an arc always connects two nodes, and therefore it cannot remain if one of the nodes is gone. This
means that certain rules apply to circuit deletion:

When a node is erased, all connecting arcs are also deleted. However, if a node is deleted that has
exactly two arcs, connected as though the node were in the middle of a single arc, then the node and
two arcs are replaced with a single arc.

•

In the interest
of cleanliness,
if an arc is
erased, any
isolated pins are
also erased.

•

If an erased
node has an
export on it (as
in this
example), then
the export
disappears and
so do all arcs
connected to the
port on
instances of the
current cell (for
more
information on
hierarchy, see
Chapter 3).

•

30 Using The Electric VLSI Design System

When an area is selected (instead of
objects) the Erase command erases all
geometry in the highlighted area. All arcs
that cross into that area will be truncated.
Thus, this command truly erases geometry,
independent of the structure of nodes and
arcs. Note that the area to be erased is
adjusted by the current alignment values
(see Section 4−7−2). For more on area
selection, see Section 2−1−3.

 Using The Electric VLSI Design System 31

#chap04-07-02
#chap02-01-03

Chapter 2: Basic Editing

2−4−1: Movement

Components can be moved by clicking on them with the left button and then dragging them around while
keeping the button pressed. During the drag, the new location of the components will be shown (as well as
the amount of motion), and once the button is released the circuitry will be moved.

Another way to move objects is to use the arrow keys. When a node or arc is selected, each press of an arrow
key moves that object by one grid unit. If the shift key or the control key is held, then the arrow keys move
the object by a block of grid units. A block of grid units is defined in the "Grid" preferences (in menu File /
Preferences..., "Display" section, "Grid" tab) to be the frequency of bold dots in the grid, initially 10. If you
hold both the shift key and the control key, then the distance moved will be a block squared (i.e. initially
100).

The distance that the arrow keys move is also
affected by the Movement commands (in menu
Edit / Modes). These commands are also available
in the tool bar.

The Quarter command causes the amount to be quartered (so unshifted arrow keys will move by a quarter
unit). The Half command causes the amount to be halved (so unshifted arrow keys will move by a half unit).
The Full command causes the amount to be full (so unshifted arrow keys will move by one unit). Note that
these menu items are attached to the "q", "h", and "f" keys and are also in the tool bar.

To move objects along only one line (just horizontally or vertically but not both), hold the Control key down
during motion. Note that holding the Control key down before clicking will change the nature of the mouse
action, so you must click first, and then press Control. When editing schematics, this will constrain objects to
movement along 45 degree angles.

When arcs are moved by a large amount, they cause the connecting nodes to move with them. However, for
small arc motion, the arc may shift within its ports. This can only happen if the port has nonzero area and if
the arc has the slidable constraint (shown with the letter "S" when highlighted). These constraints are
discussed in greater detail in Section 5−2−2.

32 Using The Electric VLSI Design System

#chap05-02-02

2−4−2: Other Modification

Another way to move a node is to use
the Object Properties... command (in
menu Edit / Properties), and type new
X and Y positions. This dialog allows
other modifications to be made as well
(orientation, etc.)

The dialog shows the location of the
anchor−point of the node.

The dialog also has a field for the node's name. This name is not related to network information, but it can be
used for identification. If a schematic node is given an arrayed name (such as "and[0:3]") then it indicates that
the node is arrayed that many times. Nodes (and arcs) are automatically be given unique names (such as
"nmos@0").

This dialog is modeless: it can remain on the screen while other editing is being done. If a different node is
selected, the dialog updates to show that node's information. The "Apply" button changes the selected node to
match the new values typed into the dialog.

The Object Properties... dialog can also expand to show more information. When the "More" button is
clicked, it grows to full size as shown.

The full size Object
Properties... dialog has many
new controls, which vary
according to the type of node
selected:

"Expanded" and
"Unexpanded" control
how the node is drawn
(if it is a cell instance).
An expanded instance
is one that shows its
contents; an
unexpanded instance is
drawn as a black box
(see Section 3−4).

•

"Easy to Select" sets
whether this node is
selectable with a
simple click. This
feature allows you to
eliminate pieces of
circuitry from active
editing (see Section
2−1−5).

•

 Using The Electric VLSI Design System 33

#chap02-01-05
#chap02-01-05

"Invisible Outside Cell" indicates that this node will not be drawn when the current cell is viewed
from higher−up the hierarchy.

•

"Locked" nodes may not be changed (moved, deleted).•

The bottom of the expanded Object Properties... dialog has a scroll area that can view "Ports" or
"Attributes". By default, a list of the node's ports is shown, including any exports, connections, and highlight
details. If the "Attributes" button is selected, the list shows the attributes on the node. When "Attributes" is
selected, the entries in the list let you modify individual values. Note that there is also an "Attributes" button,
which brings up a full dialog for editing them.

If many objects are selected, you can move them by a specific distance with the Move Objects
By... command (in menu Edit / Move).

If many nodes are selected,
the Properties... command
will list all of them, and allow
position and size changes to
be made at once to each in the
group. If a position and size
value appears in the dialog, it
means that this value is the
same on every selected node.
If the field is blank, it means
that there are different values.

Changes are only made in the
fields where you type a value.
To remove an item from the
list (not the circuit, just this
list) use the "Remove" button.
To remove all but the selected
item, use "Remove Others". If
only two objects are selected,
this dialog shows the distance
between their centers.

The multi−object Properties... dialog also allows you to change selection ease with the "For everything:"
popup (see Section 2−1−5 for more on selection styles). When many exports are selected, the dialog allows
you to change their characteristics with the "For all selected exports:" popup (see Section 3−6−1 for more on
exports).

34 Using The Electric VLSI Design System

#chap02-01-05

Chapter 2: Basic Editing

2−5−1: Node Sizing

To change the size of a node, select it and use the Interactively command (in menu Edit / Size). After you do
that, your mouse movements will stretch an outline around the node. The outline is anchored at the corner
farthest from the cursor, and stretches the corner closest to the cursor. An alternate way to resize is to anchor
the center of the node and stretch the closest corner to the cursor (with the other three corners adjusting
similarly). To get this alternate resizing, press the Shift key while the mouse is pressed.

If you hold the mouse button down while dragging, you can see the final size of the node. Release the mouse
button to actually resize the node. To abort this operation, type Escape.

To constrain sizing so that only one dimension changes, hold the Control key while moving the mouse.

To change the size of more than one node at a time,
select the nodes and use the All Selected
Nodes... command (in menu Edit / Size). The dialog
allows you to set the X and Y sizes of the selected
nodes. If you leave one of these size fields empty,
that coordinate is not changed.

Note that when typing size amounts into a dialog, specify the size of the highlighted area. In a typical MOS
transistor, the highlighted area (where active and polysilicon cross) is 2x3, even though the component is
much larger if you include the four overlap regions sticking out.

 Using The Electric VLSI Design System 35

2−5−2: Arc Sizing

To change the width of an arc, issue the Interactively command (in menu Edit / Size). Note that the arc
stretches about its center so that an edge is at the cursor location. Click a button to make the change. To
change the size of more than one arc at a time, select the arcs and use the All Selected Arcs... command.

Another way to change an arc's width
is to select it and use the Object
Properties... command (in menu Edit /
Properties).

Note that when typing size amounts
into a dialog, specify the size of the
highlighted area. A CMOS active arc
shows highlighting only on its active
area, even though the complete arc has
implant regions that are much larger.

The "Name" field lets you name an arc
(see Section 6−8−1). Arc names are
only displayed on the arc if they have
been explicitly typed into this dialog.
You can also use the "Props." button to
show a dialog that controls all aspects
of a displayed arc name.

The "Easy to Select" checkbox enables
selection of the arc with a simple click
(see Section 2−1−5).

Many pieces of state can be changed here, including Rigid and Fixed−angle (see Section 5−2−1), Slidable
(see Section 5−2−2), Directionality (see Section 5−4−1), Ends extension (see Section 5−4−3), and Negation
(see Section 5−4−2).

When an Artwork arc has been selected (see Section 7−6−1), the "Color" field is available for setting its
color.

36 Using The Electric VLSI Design System

#chap02-01-05
#chap05-02-02
#chap05-04-03
#chap05-04-02

Chapter 2: Basic Editing

2−6: Changing
Orientation

There are two commands that can be used to change the orientation of a node. The Rotate command (in
menu Edit) has a submenu that allows the currently highlighted objects to rotate in any of three Manhattan
directions or by an arbitrary amount.

The Mirror command (in menu Edit) has a submenu that allows you to flip the currently highlighted objects
about their vertical centerline (left/right mirroring) or their horizontal centerline (up/down mirroring).

Be aware that mirroring is not the same as rotating, even though both may produce the same visual results.
Mirroring causes the node to be flipped about its horizontal or vertical centerline, and thus appear backwards.

 Using The Electric VLSI Design System 37

38 Using The Electric VLSI Design System

Chapter 3: Hierarchy

3−1: Cells

A collection of nodes and arcs is called a cell, and instances of cells can be placed in other cells. When a cell
instance is placed, that instance is also a node, and is treated just like the simpler transistor and contact nodes.
Thus, nodes come in two forms: primitive and complex. Primitive nodes are found in the component menu
and are pre−defined by the technologies (transistors, contacts, pins). Complex nodes are actually instances of
other cells, and are found in libraries.

Besides organizing cells into a hierarchy,
Electric also organizes cells into cell
groups and gives each cell a view and a
version. A cell's view describes its contents
(for example "layout", "schematics",
"netlist", etc.) A cell's version defines its
design age. The full name of a cell is:

CELLNAME;VERSION{VIEW}

where CELLNAME is the name of the cell,
VIEW is the abbreviated name of this cell's
view, and VERSION is the version number
of this view of the cell. When no version
number is displayed, it implies that this cell
is the most recent version (has the largest
number). Thus, the cell "gate;2{lay}" is more
recent than "gate;1{lay}" but less recent than
"gate{lay}" (which must have a higher
version number, probably 3).

In this example, there is a library with two cell
groups. One group has a set of cells called "gate"
and the other has a set of cells called "latch". On
the right is the explorer view of these cells. See
Section 4−8 for more on the cell explorer.

Although it is not necessary for cells in a group
to all have the same name, the system presumes
that common names will be grouped together.
Once in a group, you can rename a cell to give it
a different name than the others in its group. Use
the Rename Cell... command (in menu Cell).
You can also use context menus in the cell
explorer to rearrange groups.

 Using The Electric VLSI Design System 39

Chapter 3: Hierarchy

3−2: Cell Creation and
Deletion

Cells are created with the New Cell... command (in menu Cell).

The New Cell... command requests a
new cell name as well as its view and
technology. You can choose to show
the cell in the current window, or
create a new one.

Cell names may not contain spaces,
tabs, unprintable characters, or a
colon. Uppercase and lowercase
characters are not distinguished: The
cell "UPPER" is the same as the cell
"Upper." However, the form of
capitalization that is used when a cell
is first created is retained for all
further use.

Another way to create a new cell is to make a copy of an existing one. The Duplicate Current Cell and
Duplicate Cell... commands (in menu Cell) copy a cell to a different one with a new name (you will be
prompted for the new name). The New Version of Current Cell command makes a copy of the cell in the
current window, but since it is a "new version", it has the same cell name. The newly created cell is displayed
in the window.

Once cells are created you can edit them with the Edit Cell... command (in menu Cell). Cells can also be
edited by using the cell explorer (see Section 4−8 for more).

40 Using The Electric VLSI Design System

To delete a cell, use the Delete
Cell... command (in menu Cell). When
deleting a cell, there cannot be any
instances of this cell, or the deletion fails.
As a side effect of failure, you are shown a
list of all other cells that have instances of
this, so you can see the extent of its use. To
find out whether a cell is being used
elsewhere in the hierarchy, use the List
Cell Usage command (in menu Cell / Cell
Info).

Because Electric is able to keep old
versions of cells, deleting the latest version
will cause an older version to become the
"most recent". Old versions are those
whose cell names include the ";VERSION"
clause indicating that there is a newer
version of this view of the cell. For
example, if you have cell "Adder" and an
older version "Adder;1", then deleting
"Adder" will cause "Adder;1" to be
renamed to "Adder". This might make you
think that the deletion failed, because there
is still a cell called "Adder", but this cell is
actually the older (but now most recent)
version.

To clean−up old and unused versions of cells, use the Delete Unused Old Versions command (in menu
Cell). Any such cells that are no longer used as instances in other cells will be deleted from the library. You
will get a list of deleted cells, and it is possible to undo this command.

 Using The Electric VLSI Design System 41

Chapter 3: Hierarchy

3−3: Creating Instances

To place an instance of a cell in another cell, use the "Cell" button in the component menu. After choosing a
cell from the popup list, click in the edit window to place the instance.

Another way to place an instance of a
cell is to use the Place Cell
Instance... command (in menu Cell).
You will be shown a list of cells that
are available for creation. After
selecting one, click to create an
instance in the current cell.

The cell selection dialog has three
controls at the top for viewing cells.
The "Library" popup lets you choose
which library to examine. You can
choose "ALL" to see cells from all
libraries. The "View" popup lets you
see only those cells in the specified
view. Again, you can choose "All" to
see all views. The "Filter" field
contains a regular expression that must
match a cell name in order to list it.

If you place an instance from a
different library, that library will be
linked to the current one. Linked
libraries are read from disk together,
and form a single hierarchy that spans
multiple files. See Section 3−9−1 for
more on libraries.

An alternate way to create a cell instance is to duplicate an existing one on the screen. This requires that an
instance of that particular cell already exist. Select the existing cell and use the Duplicate command (in menu
Edit). Then move the cursor to the intended location of the new instance and click to create the copy. Note
that this command copies all attributes of the original node including its orientation.

42 Using The Electric VLSI Design System

When a cell instance is
being created, the cursor
points to its anchor point.
The anchor point is that
point inside of the cell
where the coordinate
space has its origin. This
is often defined by the
location of a
cell−center node inside
of the cell.

Most cells have a cell−center node placed automatically in them. If there isn't one and you want it, click on
the "Misc" button in the component menu on the left, and choose "Cell Center". A cell−center node, placed
inside of the cell definition, affects the anchor point for all subsequent creation of instances of the cell.

 Using The Electric VLSI Design System 43

Chapter 3: Hierarchy

3−4: Examining Cell
Instances

When instances are initially created, they are drawn as black boxes with nothing inside. This form of instance
display is called unexpanded, as opposed to expanded display which shows the actual layout inside the
instance. To expand an instance, select it and use the commands of the Cell / Expand Cell Instances menu.
The One Level Down command opens up the next closed level; the All the Way command opens up all
levels to the bottom; and the Specified Amount... lets you type a number of levels of hierarchy to expand.
These commands expand all highlighted cells. If a highlighted cell is already expanded, this command
expands any subcells inside of the instance, repeatedly down the hierarchy.

Once expanded, a cell instance will continue to be drawn with its contents shown until the commands of the
Cell / Unexpand Cell Instances command are used. These commands return cell instances to their
black−box form, starting with the deepest subcells that are expanded at the bottom of the hierarchy. The One
Level Up command closes up the bottommost expanded level; the All the Way command closes all levels
from the bottom; and the Specified Amount... lets you type a number of levels of hierarchy to close.

You can also use the expansion (opened eye) and
unexpansion (closed eye) icons from the tool bar to
expand and unexpand by one level.

The expansion information can also be set or reset by using the Object Properties... command (in menu Edit
/ Properties) and clicking on the "Expanded" or "Unexpanded" buttons.

There are times when you want to see the layout inside of a cell instance, but only temporarily. The Look
Inside Highlighted command (in menu Cell) displays everything in the highlighted area, down through all
hierarchical levels. This is a one−shot display that reverts to unexpanded form if the window is shifted,
scaled, or redrawn.

There is a slight difference in specification between the Expand Cell Instances commands and the Look
Inside Highlighted command. The Expand Cell Instances commands affect cell instances only, and thus
any instances that are highlighted or in the highlighted area will be completely expanded. The Look Inside
Highlighted command affects layout display in an area, so only those parts of instances that are inside of the
highlighted area will be shown. Thus, the command Look Inside Highlighted is more precise in what it
expands and can be used, in conjunction with Area selection, to show only a specific part of the circuit (see
Section 2−1−3 for more on area selection).

44 Using The Electric VLSI Design System

#chap02-01-03

Chapter 3: Hierarchy

3−5: Moving Up and
Down the Hierarchy

Each editing window in Electric displays a single cell. Editing changes can be made only to that cell, and not
to any subcells that appear as instances. Thus, you may be able to see the contents of a cell instance, but you
cannot edit it.

To edit a cell instance, use the Down Hierarchy command (in menu Cell). This command will descend into
the definition of the currently selected cell instance. The contents will appear at the same size and location as
the instance, and you will now be able to edit the contents.

If an icon is selected, the Down Hierarchy command will take you to the associated schematic. If the icon
that is selected is already in its own schematic (you can place an icon inside its own schematic for
documentation purposes), then the Down Hierarchy command takes you to the actual icon so that you can
edit it.

If a layout cell is selected, you can use the Down Hierarchy In Place command to edit the cell while
showing the upper level of the hierarchy. The surrounding geometry at the upper level is not editable, and is
grayed−out.

Schematic nodes can be arrayed by giving them array names (see Section 6−9−3). When you descend into an
arrayed node, the system does not know which element of the array you are entering. Most of the time, the
specific element is irrelevant, but if the circuit is being simulated, the specific instance may be necessary for
cross−probing. Therefore, if the cell is being simulated and you descend into an arrayed node, you will be
prompted for the specific element that you wish to visit. There are other situations that cannot be detected,
where the specific element needs to be known. To solve this problem, you can request that Electric prompt
for the specific element in all situations where an arrayed node is visited. To do this, check "Always prompt
for index when descending into array nodes" in the "General" preferences (in menu File / Preferences...,
"General" section, "General" tab)

The Up Hierarchy command pops you to the next higher cell in the hierarchy. If there was an associated
Down Hierarchy command, then this returns you to the place where you started, up the hierarchy. If the
Down Hierarchy commands were not used, Electric attempts to figure out the next higher cell in the
hierarchy, switching icons for schematics where appropriate. If there are multiple possibilities (because the
current cell is used in many locations) then you will be prompted for a specific location.

Besides using the Up Hierarchy and Down
Hierarchy commands, you can also use the tool bar "back"
and "forward" buttons to move through the hierarchy.

If you right−click on these icons, you are given a list of cells and can jump directly to one of them.

When going down or up the hierarchy, if an export or port is selected, then the equivalent port or export is
shown after the level of hierarchy has changed.

 Using The Electric VLSI Design System 45

#chap06-09-03

Chapter 3: Hierarchy

3−6−1: Export
Creation

All nodes in Electric have connection sites, called ports, which indicate where wires may be attached. The
primitive nodes have predefined ports, but ports on cell instances must be defined by the user. To do this,
simply select a port on a node inside the cell, and turn it into an export, which makes it available on all
instances of the current cell. Although most ports are on nodes along the edge of the cell, Electric makes no
port location restrictions, so they may appear anywhere.

To see the location of all ports on the selected nodes, use the Show Ports on Node command (in menu
Export).

To create an export, select a port
on a node and use the Create
Export... command (in menu
Export). The resulting dialog
requests an export name and some
characteristics.

All export names on a cell must be unique; if a nonunique name is given, it is modified to be unique. This
modification involves adding "_1", "_2", etc. to the end of scalar export names, or changing the index (from
[1] to [2], etc.) for arrayed export names. Like cell names, export names may not contain spaces, tabs, or
unprintable characters. Although no case distinction is made between uppercase and lowercase characters; the
original case usage is preserved.

Behavioral characteristics can be associated with an export by selecting the appropriate field in the export
creation dialog. These behavior characteristics are stored with the export and used primarily by simulators.
The characteristics include the following:

Directional: "input", "output", and "bidirectional". •
Supply: "power" and "ground". •
Clocking: "clock" (a generic clock export) and "clock phase 1" through "clock phase 6". •
Reference: "reference input", "reference output", and "reference base". In addition, reference exports
carry an associated export name that is used by the CIF netlister.

•

The "Always drawn" check box requests that the export label should always appear, regardless of the
connection or expansion of its cell. Typically, an export label on an instance of a cell is not displayed when
that port is connected to an arc or when the instance is expanded. This check box overrides the suppression.

46 Using The Electric VLSI Design System

Another special check box, "Body only," requests that this export not appear when an icon is generated for
the cell. This is useful for power and ground exports or duplicate connection sites on a single network.

There are many special exporting commands that are primarily used in array−based layout. If a cell instance
is replicated many times and the instances are wired together, then ports on the edge of the array are the only
ones that are not wired. These ports define the connections for the next level of hierarchy. What you want to
do is to create exports for all unwired ports on all cell instances. To do this, use the Re−Export
Everything command (in menu Export), which generates unique names as it exports all unwired ports on
cell instances. To do this same function, but only on the currently highlighted nodes, use Re−Export
Selected. To do this same function, but inside of the highlighted area, use Re−Export Highlighted Area.
These two commands can also be run so that wired ports are re−exported, by using the Re−Export Selected,
With Wired Ports and Re−Export Highlighted Area, With Wired Ports To do this same function, but
only for Power and Ground exports, use Re−Export Power and Ground. Note that ports on primitive nodes
are not exported with these commands. See Section 6−4 for more about arrays, and see Section 9−6−1 for
more on automatic wiring.

Another special command for export creation is Add Export from Library..., which copies exports from
another library to the current one. The other library is examined for cells whose names match ones in the
current library. When a cell is found in the other library, all of its exports are copied to the cell in the current
library (if they don't already exist) and placed in the same location. This command is useful in managing
standard cell libraries that are imported from other file formats (see Section 3−9−4 on Standard Cell
Libraries). Because some formats contain geometry and others contain connectivity, this command is needed
to put them together.

 Using The Electric VLSI Design System 47

#chap03-09-04

3−6−2: Export Information

Exports are selected by clicking on their text, or by clicking on the node from which they are exported. If a
very dense design makes export selection hard, you can choose from a list by using the Select
Object... command (in menu Edit / Selection).

To see all exports that have been defined in the current cell, use the Show Exports command (in menu
Export). The List Exports command gives the same information, but in text form, and the Summarize
Exports command gives a text list that is reduced where sensible. To see a list of exports that are electrically
connected to the current object, at multiple levels of hierarchy, use the List Exports on Network and List
Exports below Network commands (in menu Tool / Network).

Once a port has been exported, its
characteristics can be modified by
selecting the export name and
using the Object
Properties... command (in menu
Edit / Properties). You can
change basic export information
such as the name, characteristic,
and reference name (if
applicable). You can control
export state such as whether it is
always drawn, and whether or not
it appears on icons. You can also
change the appearance of the
export by editing the size, font,
color, style, anchor point, and
rotation of the name. See Section
6−8−1 for more about text
appearance.

Special buttons in the Export Properties dialog allow you to examine related objects. The "Highlight Owner"
button shows the node on which this export resides, and the "Attributes" button brings up an Attributes dialog
for the export (see Section 6−8−5 for more on Attributes).

You can change the characteristics of many exports at once by selecting them and using the Object
Properties... command (in menu Edit / Properties). This multi−object dialog has a "For all selected
exports:" popup that will change all export characteristics at once. You can change the name of exports by
using the Rename Export... command (in menu Export).

48 Using The Electric VLSI Design System

#chap06-08-05

Ports and exports can be displayed
on the screen in many different
ways. To control this, use the
"Ports/Exports" preferences (in
menu File / Preferences...,
"Display" section, "Ports/Exports"
tab). The dialog offers three
options for ports and exports:
"Full Names" shows full text
names, "Short Names" shows port
and export names only up to the
first nonalphabetic character, and
"Crosses" shows crosses at the
locations.

With short names, the exports "Power−left" and "Power−1" are both written as "Power," which allows
multiple exports with the same functionality but different names to be displayed as if they have the same
name. To remove port display completely, use the "Layers" tab of the side bar (see Section 4−5). In this panel
are options to make exports text completely invisible.

3−6−3: Export Deletion and Movement

You can delete an export simply by selecting its name and using the Erase command of the Edit menu (or
typing the Delete key). You can also use the Delete Export command (in menu Export).

To remove many exports at once, the Delete Exports on Selected command removes all exports on all
highlighted nodes. Also, the Delete Exports in Highlighted Area command removes only those exports that
are in the selected area . When an export is deleted, all arcs connected to that port on instances of the current
cell (higher up the hierarchy) are also deleted.

To move export text, simply select it and drag it. The location of the text has no effect on the location of the
export: moving the text is only for improvement of the display. However, if you check "Move node with
export name" in the "Ports/Exports" preferences (in menu File / Preferences..., "Display" section,
"Ports/Exports" tab), then moving an export name will cause the node (and the export) to move as well.

It is sometimes desirable to keep an export but to transfer it to another node. If a cell is in use higher in the
hierarchy, unexporting and then reexporting deletes all existing connections. Instead, the Move
Export command (in menu Export) can be used. Before using this command, two nodes and their ports must
be highlighted with left button and shift−left button. The export is moved from the first node to the second
node.

 Using The Electric VLSI Design System 49

Chapter 3: Hierarchy

3−7−1: Cell Lists

To get some basic information about the
current cell (size, dates, etc) use the Describe
this Cell command (in menu Cell / Cell Info).

To get information about more than one cell,
use the General Cell Lists... command. The
dialog selects a subset of the cells in the
current library.

The section labeled "Which cells:" selects the
cells to be listed (all, only those used in other
cells, only those NOT used in the current cell,
only those in the current cell, or only
"placeholder" cells: those created because of
cross−library dependency failures, see Section
3−9−1).

The section labeled "View filter:" allows only
certain views to be displayed.

The section labeled "Version filter:" allows
removal of older or newer versions of cells.

The section labeled "Display ordering:"
controls the order in which the selected cells
will be listed.

The section labeled "Destination:" allows you
to dump this listing to a disk file, formatted for
spreadsheets (tab−separated).

The result of cell information listing looks like this:

−Cell−−−−−−−−−−−−Version−−−−Creation date−−−−−−−−−−Revision Date−−−−−−−−−Size−−−−Usage−−L−I−C−D
tech−Artwork{} 1 Dec 31, 1969 16:00:00 Dec 15, 2004 11:34:15 131.0x83.0 0 L
tech−Bipolar{ic} 1 Dec 15, 2004 11:34:25 Dec 15, 2004 11:34:25 10.0x12.0 1
tech−Bipolar{lay} 1 Jul 23, 1990 23:25:49 Dec 15, 2004 12:38:11 37.0x73.5 0
tech−Bipolar{sch} 1 Jul 26, 1990 23:58:58 Dec 15, 2004 11:34:27 58.75x59.5 0 L I
tech−DigitalFilter{} 1 Dec 31, 1969 16:00:00 Dec 01, 2000 13:56:47 48.0x45.5 0
tech−MOSISCMOS{lay} 1 Jul 24, 1998 16:10:55 Dec 09, 2001 12:35:29 85.5x83.0 0 D
tech−PCB7404{} 1 Dec 31, 1969 16:00:00 Dec 15, 2004 11:45:03 12.5x28.5 1
tool_NCC{sch} 1 Mar 27, 2001 06:35:49 Jan 25, 2002 15:57:57 44.0x41.5 0 L I

50 Using The Electric VLSI Design System

The last five columns show the usage and four state bits. The usage is the number of times that this cell
appears as an instance in other cells. The state bits are:

"L" if the cell contents are locked•
"I" if instances in the cell are locked•
"C" if the cell is part of a cell library•
"D" if the cell has passed design−rule checking•

For more cell information, use the commands of menu Cell / Cell Info. The List Nodes in this
Cell command shows all nonprimitive nodes in the current cell. The List Cell Instances command shows all
cell instances below the current cell. The List Cell Usage command looks up the hierarchy and finds cells
that contain the current cell as an instance.

3−7−2: Cell Graphing

The Graphically,
Entire
Library command (in
menu Edit / Cell Info)
displays a graph of
every cell in the library.
The Graphically,
From Current
Cell command displays
a graph that places the
current cell at the top.
These commands create
a graph of the cell
hierarchy. This graph is
actually a new cell,
called "CellStructure",
built from Artwork
nodes, and stored in the
current library.

 Using The Electric VLSI Design System 51

3−7−3: Cell Properties

To examine and set more information about existing cells, use the Cell Properties... command (in menu
Cell): The left side of the dialog lists cells by library. On the right are the properties of these cells.

The checkbox "Disallow modification of anything in this cell", allows you to control whether the contents of
a cell is editable or not. When modification is disallowed, no changes may be made. This is useful when you
want to allow examination without accidental modification.

The checkbox "Disallow modification of instances in this cell", also prevents changes to the selected cell, but
in this case, only instances of sub−cells are locked. This is useful when you have a correct instance placement
and are doing wiring.

If you make a change that has
been disallowed, a dialog
appears that asks if you want to
override the lock. You may
make the change ("Yes"),
disallow the change ("No"), or
remove the lock ("Always",
which unchecks the locks in
this dialog).

The check box "Part of a cell−library" indicates that this cell is from a library of standard cells and should be
treated accordingly.

The check box "Part of technology editor library" indicates that this cell helps to define a technology. For

52 Using The Electric VLSI Design System

more on the technology editor, see Section 8−1.

For the first 4 checkboxes in this dialog, there are buttons on the right which allow you to set or clear these
flags for all cells in the library.

The "Expand new instances" and "Unexpand new instances" buttons choose whether newly created instances
of this cell are expanded (contents visible) or unexpanded (drawn with a black outline) See Section 3−4 for
more on expansion.

The "Characteristic Spacing" is the spacing of this cell when arrayed (see Section 6−4).

Each cell is tied to a specific technology. The cell's technology is set when the cell is created. You can change
the technology that is associated with a cell by using the "Technology" popup.

The lower−right has frame controls for the cell. The frame is a border that is usually drawn around
schematics. You can set the frame size, whether it is wider (Landscape mode) or taller (Portrait mode), and
whether a title box is drawn in the corner. Additionally, you can set the designer name to be drawn for each
cell. Other information in the title box (company name, project name) are set on a per−user or per−library
basis with the "Frame" preferences (in menu File / Preferences..., "Display" section, "Frame" tab). See
Section 7−5−2 for more on frames.

 Using The Electric VLSI Design System 53

#chap07-05-02

Chapter 3: Hierarchy

3−8: Rearranging Cell
Hierarchy

In order to manipulate hierarchical circuits, it is useful to create and delete levels of the hierarchy. The
Package Into Cell... command (in menu Cell) collects everything in the highlighted area into a new cell. You
will be prompted for the cell name. The most convenient way to specify an area for packaging is to use the
Area Selection commands (see Section 2−1−3). Every node touching the area is included in the new cell. All
arcs between nodes in the area are also included. The highlighted circuitry is not affected.

The opposite function is the removal of levels of hierarchy. This is done with the Extract Cell
Instance command, which takes the currently highlighted cell instances and replaces them with their
contents. Repeated use of this command goes further down the hierarchy until it is fully instantiated. All arcs
that were connected to the cell instances are reconnected to the correct parts of the instantiated circuitry.

54 Using The Electric VLSI Design System

#chap02-01-03

Chapter 3: Hierarchy

3−9−1: Introduction to
Libraries

A library is a collection of cells that forms a consistent hierarchy. To enforce this consistency, Electric stores
an entire library in one disk file that is read or written at one time. It is possible, however, to have multiple
libraries in Electric. Only one library is the current one, and this sometimes affects commands that work at
the library level. When there are multiple libraries, you can switch between them with the Change Current
Library... command (in menu File) or by using the library's context menu in the cell explorer (see Section
4−8). To see which libraries are read in, use the List Libraries command.

To create a new, empty library, use the New Library... command (in menu File). To change the name of the
current library, use the Rename Library... command. To delete a library, use the Close Library command.
This removes only the memory representation, not the disk file. Note that library changes are too vast to be
tracked by the database−change mechanism and so are not undoable.

It is possible to link two libraries by placing an instance of a cell from one library into another (this is done
with the Place Cell Instance... command in menu Cell). When this happens, the library with the instance (the
main library) is linked to the library with the actual cell (this is the reference library). Because the reference
library is needed to complete the main library, it will be read whenever the main library is read.

If referenced libraries are edited independently, it is possible that a reference to a cell in another library will
not match the actual cell in that library. When this happens, Electric creates a "placeholder" cell that matches
the original specification. Thus, the link to the referenced library is broken because the cell there does not fit
where the instance should be. To see a list of all placeholder cells that were created because of such
problems, use the General Cell Lists... command (in menu Cell / Cell Info) and select "Only placeholder
cells".

When reading and writing libraries, Electric offers a number of ways to choose the directory in the file
system. The choices are available in the "Working directory" field of the "General" preferences (in menu File
/ Preferences..., "General" section, "General" tab):

"Based on OS" indicates that Electric should choose a directory based on the standard look−and−feel
used in your operating system.

•

"Use current directory" indicates that Electric should use the current directory (the one that was
current when Electric started).

•

"Use last used directory" indicates that Electric should remember the last directory that it used (even
across sessions).

•

Electric comes with some built−in libraries. There are two Spice primitive libraries (see Section 9−4−3). A
library of examples can be loaded with the Load Library command (in menu Help / Samples). A set of
MOSIS CMOS pads can be loaded with the MOSIS CMOS Pads command (in menu Help / Load Built−in
Libraries). A set of gates, useful for Logical Effort (see Section 9−9), can be loaded with the Load Logical
Effort Libraries (Purple, Red, and Orange) command (in menu Tool / Logical Effort).

 Using The Electric VLSI Design System 55

#chap09-04-03

3−9−2: Reading Libraries

The Open Library... command (in menu File) brings a new library into Electric from disk. These libraries
may have the extension ".elib" or ".jelib" (the jelib format is the default, see Section 10−1).

You can also use the open−library
icon from the tool bar.

Electric users with very old ".elib" files may have difficulty reading them into Electric. If you have been
using versions of Electric prior to 7.00, it may help to upgrade to that version and read the libraries. Saving
".elib" files from version 7.00 will work properly in the current system.

By default Electric searches for libraries in the working directory, absolute file path references, and Electric's
internal library directory. Users can specify additional directories to search by using a file called "LIBDIRS"
placed in the working directory. This file specifies additional paths to search for library files. The file has the
following syntax:

 * <comments>
 include <another_LIBDIRS_file>

<library_directory>

Paths may be absolute or relative.

Besides Electric libraries, it is possible to read circuit descriptions that are in other formats with these
commands in the File / Import menu:

CIF (Caltech Intermediate Format) is used to describe integrated circuit layout. It contains no
connectivity, so after the library is read, it does not know about transistors and contacts: just layers.
You can use the node extractor to convert CIF to real Electric components (see Section 9−10−2). To
affect how CIF is read, use the "CIF" preferences (in menu File / Preferences..., "I/O" section, "CIF"
tab). See Section 7−3−2 for more on CIF.

•

GDS II (Stream) is also used to describe integrated circuit layout. It contains no connectivity, so
after the library is read, it does not know about transistors and contacts: just layers . You can use the
node extractor to convert GDS to real Electric components (see Section 9−10−2). To affect how GDS
is read, use the "GDS" preferences (in menu File / Preferences..., "I/O" section, "GDS" tab). See
Section 7−3−3 for more on GDS.

•

EDIF (Electronic Design Interchange Format) is used to describe both schematics and layout.
Electric reads EDIF version 2 0 0. Use the "EDIF" preferences (in menu File / Preferences..., "I/O"
section, "EDIF" tab) to affect how EDIF is read (see Section 7−3−4).

•

LEF (Library Exchange Format) is an interchange format that describes the cells in a library. The
cells that are read in contain ports, but very little contents.

•

DEF (Design Exchange Format) is an interchange format that describes the contents of a library.
DEF input often makes use of associated LEF files which must already have been read. Use the
"DEF" preferences (in menu File / Preferences..., "I/O" section, "DEF" tab) to affect how DEF is read
(see Section 7−3−5).

•

DXF (AutoCAD) is a solid−modeling interchange format, and so it may contain 3D objects that
cannot be read into Electric. Nevertheless, Electric creates a library of artwork primitives as well as it
can. Use the "DXF" preferences (in menu File / Preferences..., "I/O" section, "DXF" tab) to affect
how DXF is read (see Section 7−3−7).

•

SUE (Schematic User Environment) is a schematic editor that captures a single cell in each file.
The circuitry in SUE files is added to the current library instead of being placed in its own library

•

56 Using The Electric VLSI Design System

#chap09-10-02
#chap07-03-02
#chap09-10-02
#chap07-03-03
#chap07-03-04
#chap07-03-05
#chap07-03-07

(because many SUE files may have to be read to build up a single Electric library). Use the "SUE"
preferences (in menu File / Preferences..., "I/O" section, "SUE" tab) to affect how SUE is read (see
Section 7−3−8).
ELIB is an older Electric library format that is in an undocumented binary format. •
Readable Dump is an older Electric library format that captures the entire database in a
text−readable format. These files were used when the ".elib" file was the main way of saving
libraries, because a way was needed of reading library files. Now that the newer ".jelib" format is
also text−readable, there is no need to use Readable Dumps anymore.

•

Text Cell Contents is used to read a text file into a text cell. The current window must be a textual
view (such as VHDL, Verilog, documentation, etc.) See Section 4−10 for more on text windows.

•

3−9−3: Writing Libraries

Writing libraries to disk is done with the Save Library command (in menu File).

The Save All Libraries command writes all libraries that
have changed. You can also use the save−libraries icon from
the tool bar. To force all libraries to be saved, use the Mark
All Libraries for Saving command, or use Save All
Libraries in Format to specify how they are to be saved.

If a library was read from disk, it is written back to the same file. If, however, you wish to write the library to
a new file (thus preserving the original) then use the Save Library As... command.

The "Library" preferences (in menu
File / Preferences..., "I/O" section,
"Library" tab) offers options for
writing libraries to disk. By default,
saved libraries overwrite the
previous files and no backup is
created. If you choose "Backup of
last library file", then the former
library is renamed so that it has a "~"
at the end. If you choose "Backup
history of library files", then the
former library is renamed so that it
has its creation date as part of its
name.

 Using The Electric VLSI Design System 57

#chap07-03-08

Electric can also write external format files with these commands in the File / Export menu:

CIF (Caltech Intermediate Format) is used to describe integrated circuit layout. The output file
contains only the current cell and any circuitry below that in the hierarchy. Use the "CIF" preferences
(in menu File / Preferences..., "I/O" section, "CIF" tab) to affect how CIF is written. See Section
7−3−2 for more on CIF.

•

GDS II (Stream) is also used to describe integrated circuit layout. The output file contains only the
current cell and any circuitry below that in the hierarchy. Use the "GDS" preferences (in menu File /
Preferences..., "I/O" section, "GDS" tab) to affect how GDS is written. See Section 7−3−3 for more
on GDS.

•

EDIF (Electronic Design Interchange Format) can write either the Netlist or the Schematic view
of the circuit. Electric writes EDIF version 2 0 0. Use the "EDIF" preferences (in menu File /
Preferences..., "I/O" section, "EDIF" tab) to affect how EDIF is written. See Section 7−3−4 for more
on EDIF.

•

LEF (Library Exchange Format) is an interchange format that describes the exports on cells in a
library.

•

L is the GDT language, still appearing in some commercial systems. The output file contains only the
current cell and any circuitry below that in the hierarchy.

•

Eagle is an interface to the Eagle schematics design system (its netlist format). Before writing Eagle
files, you must give every node the "ref_des" attribute, and every port on these nodes the "pin"
attribute. If you also place the "pkg_type" attribute on the node, it overrides the cell name.

•

ECAD is an interface to the ECAD schematics design system (its netlist format). Before writing
ECAD files, you must give every node the "ref_des" attribute, and every port on these nodes the
"pin" attribute. If you also place the "pkg_type" attribute on the node, it overrides the cell name.

•

Pads is an interface to the Pads schematics design system (its netlist format). Before writing Pads
files, you must give every node the "ref_des" attribute, and every port on these nodes the "pin"
attribute. If you also place the "pkg_type" attribute on the node, it overrides the cell name.

•

Text Cell Contents is used to write a text file from a text cell. The current window must be a textual
view (such as VHDL, Verilog, documentation, etc.) See Section 4−10 for more on text windows.

•

PostScript is the Adobe printing language. The output file contains only a visual representation of
the current cell (or part of that cell). PostScript options can be controlled with the "Printing"
preferences (in menu File / Preferences..., "General" section, "Printing" tab).

•

HPGL is the Hewlett−Packard printing language. The output file contains only a visual
representation of the current cell (or part of that cell).

•

PNG (Portable Network Graphics) is an image format that captures the current window.•
DXF (AutoCAD) is a solid−modeling interchange format. Use the "DXF" preferences (in menu File
/ Preferences..., "I/O" section, "DXF" tab) to affect how DXF is written. See Section 7−3−7 for more
on DXF.

•

ELIB (Version 6) writes old−format binary files. These files can be read by version 6 of Electric. •

58 Using The Electric VLSI Design System

#chap07-03-02
#chap07-03-02
#chap07-03-03
#chap07-03-04
#chap07-03-07

The exported files from
Electric are often
considered to be
proprietary information,
and must be marked
appropriately. Copyright
information can be
inserted into exported files
with the "Copyright"
preferences (in menu File
/ Preferences..., "General"
section, "Copyright" tab).
Since each export file has
a different format for
comments, the copyright
text should not contain
any such characters.
Instead, the system will
insert the proper comment
characters for the
particular export format.

The copyright information will be inserted into decks exported for CIF, LEF, and PostScript, as well as in
simulation netlists for Verilog, Spice, Silos, ESIM/RSIM/RNL/COSMOS, FastHenry, Maxwell, and IRSIM.

3−9−4: Standard Cell Libraries

Electric does not come with any useful libraries for doing design. However, the system is able to make use of
Artisan libraries. These libraries are free, provided that you sign an Artisan license. Once you are licensed,
you will have standard cell libaries, pad libraries, memory libraries, and more.

Artisan libraries are not distributed in Electric format. Instead, they come in a variety of formats that can be
read into Electric. The GDS files contain the necessary geometry, and the LEF files contain the connectivity.
By combining them, Electric creates a standard cell library that can be placed−and−routed and can be
fabricated. Note that the data is not node−extracted, so not all of Electric's capabilities can be used with this
data.

To create an Artisan library, follow these steps:

Select the Artisan data that you want, and extract the GDS and LEF files for it. The GDS files will
have the extension ".gds2", which is not what Electric expects (Electric expects them to end with
".gds"), so you may want to rename them.

•

Read the LEF file into Electric with the LEF (Library Exchange Format)... command (in menu
File / Import). Keep in mind that the LEF data may come in multiple versions for different numbers
of metal layers.

•

Read the GDS data into Electric with the GDS II (Stream)... command (in menu File / Import).
Note that the proper GDS layers must be established first (with the "GDS Preferences", see Section
7−3−3). There will now be two libraries in memory: one with the GDS data and one with the LEF
data.

•

Merge the port information from the LEF library into the GDS library. It is important that the GDS
library be the "current library" (use the Change Current Library... command in menu File if it is

•

 Using The Electric VLSI Design System 59

http://www.artisan.com
#chap07-03-03
#chap07-03-03

not). To merge the LEF port information, use the Add Exports from Library... command (of menu
Export). You will be prompted for another library, and should select the one with the LEF data.
At this point, the GDS library now has standard cells in it, including the export information that was
in the LEF library. Before saving it to disk, you should probably use the Cell Properties... command
(of menu Cells, see Section 3−7−3) and set all of the cells to be "Part of a cell−library".

•

60 Using The Electric VLSI Design System

#chap03-07-03

Chapter 3: Hierarchy

3−10: Copying Cells
Between Libraries

In general, different libraries are completely separate collections of cells that do not relate. For example, two
cells in different libraries can have the same name without being the same size or having the same content.
Although a cell from one library can be used as an instance in another, this causes the two libraries to be
linked together. It may be simpler to copy the cells from one library to another, thus allowing a single library
to contain the entire design.

The Cross−Library
Copy... command (in
menu Cell) provides a
dialog for copying cells
between libraries. The
left and right columns
show the contents of two
different libraries (and
the pulldowns above
each column let you
select the two libraries
that you want to use).

When there is a cell with
the same name in both
libraries, the system
compares them to
determine which is
newer.

If you check "Date and content" (and then "Compare" to do comparison again) Electric will compare the
actual contents of cells when determining their equality. Unchecking "Examine quietly" will cause the system
to describe differences found during comparison.

 Using The Electric VLSI Design System 61

By choosing a cell in the right−hand library and clicking "<< Copy", that cell is copied into the left−hand
library. The "Copy >>" button does the reverse. If "Delete after copy" is checked, the buttons change to "<<
Move" and "Move >>".

The system can be requested to copy additional cells that relate to the selected one. By checking "Copy
subcells", all subcells of the copied cell are also transfered. By checking "Copy all related views", all related
views (icon, schematic, layout, etc.) are also transfered. Note that if "Copy all related views" is off but you
want to "Copy subcells", it still copies related views in a limited fashion (i.e. schematics and icons are copied
together).

When there is a reference to an instance inside of a copied cell, and that instance already exists in the
destination library, there are many ways to handle the transfer. For example, library "Frank" has cell "A"
which has, inside of it, an instance of cell "B" ("B" is also in library "Frank"). You want to copy cell "A" to
library "Tom", but there is already a cell called "B" in library "Tom". These things may happen:

If "Copy subcells" is checked, then a new version of "Tom:B" is created from "Frank:B", and this cell
is instantiated in the copied "Tom:A".

•

If "Copy subcells" is not checked, the instance in the new "Tom:A" points to the old "Frank:B". •
If "Copy subcells" is not checked and "Use existing subcells" is checked, the instance in the new
"Tom:A" points to the existing cell "Tom:B". In order for this to work, however, the size and exports
of "Tom:B" must match the original in "Frank:B".

•

Therefore, if "Copy subcells" is checked, "Use existing subcells" is implied.

62 Using The Electric VLSI Design System

Chapter 3: Hierarchy

3−11−1: Setting a
Cell's View

Each cell has a view, which provides a description of its contents. A view consists of a full name and an
abbreviation to be used in cell naming. For example, the "layout" view is abbreviated "lay" and so the layout
view of cell "adder" is called "adder{lay}." When no view name appears, the cell has the "unknown" view.
Possible views are:

"layout" (for IC layout) •
"schematic" (for logic designs) •
"icon" (to describe a cell symbolically) •
"layout.skeleton" (a minimal view) •
"documentation" (a text−only view) •
"VHDL" or "Verilog" (text−only views for hardware−description languages) •
a number of "netlist" views (text−only views that list connectivity for various tools such as "netlisp",
"als", "quisc", "rsim", and "silos")

•

"unknown" (no specified view) •

When creating a cell with the New
Cell... command, you can specify its
view. After creation, you can change the
current cell's view with the Change Cell's
View... command (in menu View). You
can also use context menus in the cell
explorer to change a cell's view. Note that
this is one of the few commands in
Electric that is NOT undoable.

3−11−2: Switching between Views of a Cell

When editing one view of a cell, there are commands in the View menu that will switch to an alternate view
of the same cell.

Use Edit Layout View to switch to the layout view. •
Use Edit Schematic View to switch to the schematic view. •
Use Edit Icon View to switch to the Icon view. •
Use Edit VHDL View to switch to the VHDL view. •
Use Edit Documentation View to switch to the text−only documentation view. •
Use Edit Skeleton View to switch to the Skeleton view. •

For all other view types, use Edit Other View... and select the desired view. Note that these commands are
equivalent to the Edit Cell... command (in menu Cell) with an appropriate selection.

When editing cells with text−only views (VHDL, Documentation, etc.), the window becomes a text editor.
You may then use the Text Cell Contents... commands (in menu File / Export and File / Import) to save

 Using The Electric VLSI Design System 63

and restore this text to disk. See Section 4−10 for more on text editing.

The commands to edit another view work only when that cell exists. To create a new cell of a particular type,
use the Make... commands of the View menu. These view conversion commands are available:

Make Icon View creates an icon from a schematic (see Section 3−11−4 for more on this). •
Make Schematic View creates a schematic from a layout.•
Make Alternate Layout View... converts from layout or schematic to an alternate layout. You must
choose a specific layout technology, and the new layout will use components from that technology.

•

Make Skeleton View makes a skeletonized layout from a layout (the only thing in the skeleton is the
exports and the frame; it is a "layout icon").

•

Make VHDL View converts the current layout or schematic into structural VHDL. This VHDL is
used by the Silicon Compiler (see Section 9−12) and the ALS simulator (see Section 9−5−2). Note
that there are 5 schematic primitives which can exist in a normal and negated form ("buffer", "and",
"or", "xor", and "mux"). You can choose the names to use for these two forms in the "Schematics"
section of the "Technology" preferences (in menu File / Preferences..., "Technology" section,
"Technology" tab).

•

3−11−3: Creating and Deleting Views

If the list of possible views is not
sufficient to describe a cell, new views
can be created with the View
Control... command (in menu View).
This command shows all views and lets
you create and delete them.

When creating a new view, a name and
an abbreviation are required. The
abbreviation should be the first few
letters of the full view name. This
abbreviation will be used when
describing cells with that view. For
example, the view "fast−layout" might
have the abbreviation "fast".

The "Text View" checkbox indicates that this is a text−only view, like "Documentation", "Netlist", "Verilog",
and "VHDL".

To delete a view, use the "Delete" button. You can delete only the views that you have created, not the basic
views that exist on startup (such as "layout", "schematic", etc). Also, there must be no cells with the view that
is being deleted.

64 Using The Electric VLSI Design System

#chap03-11-04
#chap09-05-02

3−11−4: Automatic Icon Generation

A particularly useful view type is icon. The icon cell is used for instances of an associated contents cell,
which contains schematics. For example, you may have a cell called "adder{sch}" which contains a
schematic. You may then create a cell called "adder{ic}" that contains a circle with a plus sign inside (these
are nodes in the Artwork technology). This is then the icon for the contents cell "adder{sch}". Now, if you
create an instance of the schematic cell, the icon cell will actually be placed, because it is the symbol that gets
used for instances.

To generate an icon cell automatically, use the Make Icon View command (in menu View). Be sure to create
all relevant exports before issuing this command, so that the proper icon can be constructed. Note that any
export that has its "Body only" attribute checked will be omitted from the icon.

To control the look of the icons, use the "Icon" preferences (in menu File / Preferences..., "Technology"
section, "Icon" tab). The top part of the dialog lets you place each of the different export types on any of the
four sides of the icon.

The middle section of the dialog controls the body and leads of the icon.

You can choose
whether or not
to draw the
body and leads.
You can set the
spacing and
length of leads.
You can choose
the location of
the exports (at
the end of the
leads, in the
middle of the
leads, or on the
body). You can
choose the style
of the export
text (whether it
grows inward,
outward).

The bottom part of the dialog has miscellaneous controls. You can choose the technology of the exports
("Universal" uses nodes from the Generic technology which can connect to any arc; "Schematic" uses nodes
from the Schematic technology and can connect only to other Schematic arcs). Exports are arranged
alphabetically around the icon, and you can choose to reverse the alphabetical order. Finally, you can choose
the location of the icon instance in the original schematic (when you use the Make Icon View command, it
generates the icon and places an instance of that icon in the schematic). A button at the bottom requests that
an icon be made now, and takes the place of the Make Icon View command.

 Using The Electric VLSI Design System 65

The icon cell is correctly tied to its contents in most respects. If you descend into it (with the Down
Hierarchy command in menu Cell), then you actually find yourself editing the associated contents cell. The
Up Hierarchy command properly returns you to the location of the icon instance. Also, the network
consistency checker and the simulators correctly substitute the contents whenever an icon appears. In order
for this to work, however, all exports in the contents cell must exist with the same name in the icon cell (with
the exception of those that are marked "Body Only").

66 Using The Electric VLSI Design System

Chapter 4: Display

4−1: The Tool Bar

The tool bar sits near the top of the screen, below the menu bar. It provides shortcuts for many common
commands.

The tool bar has these sections:

Library Control Icons to read a library (Section 3−9−2) and to save libraries (Section 3−9−3). •
Editing Modes Icons for selection (Section 2−1−1), panning (Section 4−4−2), zooming (Section
4−4−1), outline edit (Section 6−10−2), and measuring (Section 4−7−4).

•

Arrow Distance Icons set the distance that arrow keys will move, to full, half, and quarter units
(Section 2−4−1).

•

Object or Area Icons switch between object selection and area definition (Section 2−1−3).•
Hard Select Icon to toggle the selection of hard−to−select objects (Section 2−1−5).•
Preferences Icon to show the preferences dialog (Section 6−3).•
Undo Icons to undo and redo (Section 6−7).•
Hierarchy Icons to go back and forward while traversing the hierarchy (Section 3−5).•
Expansion Icons to expand and unexpand cell instances (Section 3−4).•

 Using The Electric VLSI Design System 67

#chap03-09-02
#chap03-09-03
#chap04-04-02
#chap06-10-02
#chap04-07-04
#chap02-01-03
#chap02-01-05

Chapter 4: Display

4−2: The Messages
Window

The messages window is a text window near the bottom of the screen. Many commands list their results in
the messages window, and minor error messages are reported there.

The text in the messages window can be selected with the cursor and edited with the Cut, Copy, and
Paste commands (in menu Edit). You can remove all text with the Clear command (in menu Window /
Messages Window). In addition, you can right−click in the messages window to Cut, Copy, Clear, or Paste
the selected text. You can also use the right−click context menu to Cut or Copy all of the text in the window.

The text in the messages window can be saved to disk by using the Save Messages... command (in menu
Window / Messages Window). You will be prompted for the place to save the text. You can select the
messages window font with the Set Font... command.

68 Using The Electric VLSI Design System

Chapter 4: Display

4−3: Creating and
Deleting Editing

Windows

Initially, there is only one editing window on the screen. Electric allows you to create multiple editing
windows, each of which can show a different cell. You can also have the same cell in more than one window
to see it at different scales and locations.

New windows are created by checking the appropriate checkbox in the New Cell... or Edit Cell... commands
(in menu Cell). New windows can also be created from the cell explorer by using the context button on a cell
name.

To delete a window, click its close box, or use the Close Window command (in menu Window). Note that
you cannot delete the last window on UNIX systems, because the UNIX pulldown menus are part of the edit
windows.

When there are many editing windows on the display, you can arrange them neatly with the Window /
Adjust Position commands. The Tile Horizontally command adjusts the windows so that they are
full−width, but just tall enough to fill the screen, one above the other. The Tile Vertically command adjusts
the windows so that they are full−height, but just wide enough to fill the screen, one next to the other. The
Cascade command adjusts the windows so that they are all the same size and overlap each other uniformly
from the upper−left to the lower−right.

 Using The Electric VLSI Design System 69

Chapter 4: Display

4−4−1: Scaling

The scale of a window's contents can be controlled in a number of ways. The Zoom In command (in menu
Window) zooms in, magnifying the contents of the display. The Zoom Out command does the opposite − it
shrinks the display. Both zoom by a factor of two.

During normal editing, you can zoom the display with the shift−right button (see Section 1−8). Holding
shift−right while dragging a rectangular area causes the display to zoom into that area, making it fill the
screen. Clicking shift−right in a single location causes the display to zoom out, centered at that point.

You can also use the Zoom tool from the tool bar to zoom in
and out. This has the same zoom in and out functions, but
they are now attached to the left button (no shift needed). To
zoom into an area, click and drag out that area. To zoom
out, hold the shift key and click in the center of the desired
area. This mode can also be invoked with the Toggle
Zoom command (in menu Edit / Modes / Edit).

The most useful scale change command is Fill Window (in menu Window), which makes the current cell fill
the window.

To examine a specific area of the display, use the Focus on Highlighted command (in menu Window /
Special Zoom), which makes the highlighted objects fill the display. To examine a specific area of the
display that is not necessarily aligned with nodes and arcs, use the area select commands (see Section
2−1−3). You can also use the Zoom Box command, which allows you to drag−out a rectangle, and then
zooms to that area.

The Make Grid Just Visible command (in menu Window / Special Zoom) zooms in or out until the grid is
minimally visible. Any futher zoom−out from this point will make the grid invisible. If the grid is not being
displayed, it is turned on. See Section 4−7−1 for more on the grid.

A final scaling command is Match Other Window which redraws the current window at the same scale as
the other. If there are more than two windows, you will be asked to select the window to match.

70 Using The Electric VLSI Design System

#chap02-01-03
#chap02-01-03

4−4−2: Panning

Besides scaling, you can also pan the window contents, shifting it about on the display. This is typically done
with the sliders on the right and bottom of the window. On systems that have a mouse wheel, you can use that
to pan vertically (and hold the shift key while rolling the mouse wheel to pan horizontally).

You can also use the Pan tool from the tool bar to move the
window contents. And this mode can be invoked with the
Toggle Pan command (in menu Edit / Modes / Edit).

In addition to these methods, panning can also be done from menu commands. The Pan Left, Pan Right,
Pan Up, and Pan Down commands (in menu Window) all shift the window contents appropriately (and
because they are bound to quick keys, these operations can even be done from the keyboard). By default,
these commands shift the screen by about 30% of its size. You can use the "General" preferences (in menu
File / Preferences..., "General" section, "General" tab), to change that amount. The Small panning distance
causes subsequent shifts to be about 15% of the screen size. The Medium panning distance causes
subsequent shifts to be about 30% of the screen size. The Large panning distance causes subsequent shifts to
be about 60% of the screen size.

The Center commands (in menu Window) are rarely−used panning commands for shifting the window
contents without scaling. There are two commands: Selection makes the window shift so that the highlighted
objects are in the center of the window, and Cursor makes the window shift so that the current cursor
location is in the center of the window. Note that this second command is useful only when bound to a
keystroke, because you cannot issue the command and have a valid cursor location at the same time.

One final command is useful if the display appears incorrect. If this happens, redraw the screen with the
Redisplay Window command (in menu Window).

4−4−3: Saving Views

Once a particular scale and position is
established in a window, you can save it and
retrieve it later. The Saved Views... command
(in menu Windows) presents a dialog that lists
saved views. You can name the current view and
save it with the "Save This View" button. A
previously saved view can be displayed with the
"Restore View" button.

 Using The Electric VLSI Design System 71

Chapter 4: Display

4−5: Layer Visibility

The nodes and arcs on the display are composed
of more basic layers. By using the "Layers" tab
of the Side Bar, you can control which layers are
actually drawn.

The layers tab shows the layers in the current
technology. Changing the technology popup at
the top of this tab will change the current
technology. When a layer is checked, it is
visible. You can turn the check on and off by
double−clicking on a line. You can also use the
"Make Visible" and "Make Invisible" buttons.
The "Select All" button selects every layer so
that the "Make..." buttons will work on the entire
set.

Note that the layers are listed in order of height,
and that you can select multiple entries in the list
by using the Shift key. This means that you can
easily control visibility by depth in the chip.

Two buttons in the middle control the
highlighting of layers. By selecting a layer and
clicking "Toggle", it makes that layer stand out
on the display. Use "Clear" to return to normal
layer display.

The bottom of the tab lets you choose which of
the different types of text will be visible. These
different types of text are described more fully in
Section 6−8−1.

72 Using The Electric VLSI Design System

Chapter 4: Display

4−6−1: Electric's Color
Model

There are two preferences panels that control the appearance of individual layers in the editing window.
These are the "Colors" and "Layers" preferences (in menu File / Preferences..., "Display" section). Before
explaining these commands, it is useful to understand the distinction between transparent and opaque layers
in Electric.

Every layer in a technology is either transparent or opaque. Transparent layers are able to overlap each other,
and it is possible to see all of them. Typically, the most commonly used layers are transparent because it is
clearer to distinguish.

The remaining layers in a technology are opaque, meaning that when drawn, they completely obscure
anything underneath. These layers typically have stipple patterns so that they do not cover all of the bits. In
this way, the opaque layers can combine without obscuring the display. Because opaque color does obscure
everything under it, the less common layers are drawn in this style.

When editing colors, the opaque layers have only one color, whereas the transparent layers have many
different colors, considering their interaction with other transparent layers.

 Using The Electric VLSI Design System 73

4−6−2: Editing Colors

The first color control is the "Colors" preferences (in menu File / Preferences..., "Display" section, "Colors"
tab). The top half of the dialog lists all possible things that can have their color changed:

The transparent colors (all layers drawn transparently are listed).•
The opaque layers.•
Special colors such as the background, text, waveform windows, etc.•

When changing the background color, note that it must contrast with both the highlight color and the inverse
of the highlight color (the inverse is black in the default settings).

Electric has three different color schemes which have predefined colors. The commands of the Window /
Color Schemes menu let you switch between them. With the Black Background Colors command, the
background becomes black; with the White Background Colors command, the background becomes white;
with the Restore Default Colors command, the background becomes gray (the default).

74 Using The Electric VLSI Design System

4−6−3: Editing Patterns

The "Layers" preferences (in menu File / Preferences..., "Display" section, "Layers" tab) lets you control the
appearance of individual layers, including their stipple patterns.

Each layer has a color and pattern in the top section. You can draw in the pattern area to set a pattern, and you
can choose from a set of predefined patterns by clicking on their image below the pattern−editing area.

A layer's color is
only editable if it
is opaque. When
transparent, you
must use the
"Colors" tab to set
the color.

Two sections at
the bottom control
the appearance of
the layer on the
screen and on the
printed page. The
display section
lets you assign the
layer to one of the
transparent layers.
You can also
choose whether to
draw the layer in
solid colors or use
the specified
pattern (and if
patterned, you can
choose to outline
the pattern or not).

The printing section also lets you choose patterned vs. solid and whether to outline the pattern. In addition, it
lets you set an opacity which will control its appearance on the printed page.

 Using The Electric VLSI Design System 75

Chapter 4: Display

4−7−1: Drawing a Grid

The Toggle Grid command (in menu Window) turns the grid display on and off. The grid consists of dots at
every grid unit, and bolder dots every 10 units, but both of these distances are settable.

Initially, the grid dots are spaced 1 unit apart. The size of a grid unit can be related to real−world distance by
considering the scale of the technology. For example, in the MOSIS CMOS technology, the scale is 0.2
microns, as shown in the status area. When the grid is displayed, the dots are therefore 0.2 microns apart. For
more information on scaling, Section 7−2−1.

Note that the grid display changes as you zoom in and out. When zoomed too far out to show all of the dots,
only the bolder dots are shown. When zoomed too far out to show even the bolder dots, the grid is not
displayed. However, the fact that the grid should be on is remembered, so it reappears when you zoom back
in.

The "Grid" preferences (in
menu File / Preferences...,
"Display" section, "Grid"
tab) presents a dialog in
which grid spacing may be
set. You can change the
grid spacing for the current
window, and also set a
default grid spacing to be
used in new windows.

It is possible to change the
horizontal and vertical grid
dot spacings. You can also
change number of grid dots
between bold ones.

The grid spacing is used by arrow keys when they move objects (see Section 2−4−1 for more on arrow key
motion).

4−7−2: Aligning to a Grid

When moving or creating circuitry, the cursor location is snapped to a grid so that editing is cleaner. This
snapping is controlled by the alignment options (which are not necessarily the same as the grid options).

76 Using The Electric VLSI Design System

The "Grid" preferences (in
menu File / Preferences...,
"Display" section, "Grid"
tab) presents a dialog in
which alignment values
may be set. For example, if
the grid spacing is 2x3, and
the alignment is 0.5, then
there are up to six different
positions for placement
inside a displayed grid
rectangle.

The Align to Grid command (in menu Edit / Move) cleans up the selected objects by moving them to
aligned coordinates. This is useful for circuitry that has been imported from external sources, and needs to be
placed cleanly for further editing.

4−7−3: Aligning to Objects

It is often the case that a collection of objects should line−up uniformly. The commands of the Edit /
Move menu offer six possible ways to do this.

The command Align Horizontally to Left (and Align Horizontally to Right) moves all of the objects so
that their left edge (or right edge) is moved to the leftmost (or rightmost) location of those objects. The
command Align Horizontally to Center moves all of the objects so that their X center is at the location of
the X center coordinate of those objects.

The command Align Vertically to Top (and Align Vertically to Bottom) moves all of the objects so that
their top edge (or bottom edge) is moved to the topmost (or bottommost) location of those objects. The
command Align Vertically to Center moves all of the objects so that their Y center is at the location of the Y
center coordinate of those objects.

4−7−4: Measuring

If you wish to find the distance between any two points
on the display, use the "Measure" tool from the tool bar.

This mode can also be invoked with the Toggle Measure Distance command (in menu Edit / Modes / Edit).
Another way to measure distances is to use the cursor coordinates, displayed in the status area.

In measure mode, each click places a new point on the display, and shows the distance to the previous point.
Clicking the right button lets you start a new measure point without connecting it to the previous one.
Double−clicking the right button removes the measurements.

The measured distance can be used by the Array... command (in menu Edit) to specify spacing (see Section
6−4).

 Using The Electric VLSI Design System 77

Chapter 4: Display

4−8: The Cell Explorer

The side bar sits on the left side of every window. You can move it to the right side with the On
Right command (of menu Windows / Side Bar) and move it back with the On Left command. You can also
request that the side bar always be on the right by checking "Side bar defaults to the right side" in the
"General" preferences (in menu File / Preferences..., "General" section, "General" tab)

The cell explorer resides in the "Explorer" tab of the side bar. It shows a hierarchical tree with three main
sections: LIBRARIES, JOBS, and ERRORS.

The LIBRARIES section of the explorer
lists all libraries and cells. You can
examine them in three different ways:

Alphabetically all cells are listed
alphabetically.

•

By group all cells are listed
alphabetically, but are also
organized into cell groups.

•

By hierarchy only the "top level"
cells of each library are listed (top
level cells are those that are not
used as instances in any other
cells). Inside of a cell are the
subcells that comprise it, along
with the number of times that that
cell appears.

•

To change the view, right−click on the
LIBRARIES icon and choose a view. Note
that libraries which have been modified are
listed in bold−face.

The second section of the explorer is the JOBS section. Here are listed all running tasks in Electric. The
section is usually empty, but if multiple jobs are running at the same time, you can examine them and
manipulate them.

The third part of the cell explorer is the ERRORS section. This lists all errors that were generated by other
tools (DRC, ERC, NCC, etc.) and which can be examined with the "<" and ">" keys.

Many special functions can be done in the cell explorer. You can double−click on any cell name to see that
cell in the right half of the window. There are special context menus available by right−clicking on an entry
(use command−click on the Macintosh).

78 Using The Electric VLSI Design System

The context menu for the LIBRARIES icon has
3 parts. The top three entries let you control the
expansion of the tree. The middle entry lets
you create a new cell. The bottom three entries
lets you view the libraries in different ways
(explained above).

The context menu for each library icon has
5 parts. The top three entries let you
control the expansion of the tree. The next
entry lets you make the library the current
library. The next entry lets you manage the
library with Project Management (see
Section 6−12). The next entry lets you
create a new cell in the library. The
bottom three entries let you rename, save
or delete the library.

The context menu for each cell icon has 5
parts. The top two entries let you edit the cell
(in the current or in a new window). The next
two entries let you place an instance of the
cell and create a new cell. The next three
entries let you create a new cell version,
create a new cell copy, or delete the cell. The
next two entries let you rename the cell or
change its view. The bottom entry lets you
rearrange cell groups.

The context menu for each cell group has 2
parts. The top three entries let you control the
expansion of the tree. The bottom entries let
you create a new cell in the group, or rename
every cell in the group.

The context menu for a multi−page schematic
cell has two parts (see Section 7−5−2 for more
on multi−page schematics). The top two entries
let you edit the cell (in the current or in a new
window). The bottom entries let you add a new
page to the current multi−page schematic, or
delete the current page of the multi−page

 Using The Electric VLSI Design System 79

#chap07-05-02

schematic.

The context menu for individual jobs under the JOBS
icon has 3 entries: "Get Info" requests any additional
information about the job; "Abort" requests that the
Job stop itself (not always possible); and "Delete"
removes a job from the queue.

The context menu for each collection of errors in
the ERRORS section has 3 entries: "Delete"
removes this set of errors; "Save" saves the errors
to a disk file; and "Set Current" makes this the
current set of errors (which can be examined with
the "<" and ">" keys).

80 Using The Electric VLSI Design System

Chapter 4: Display

4−9: Printing

To make a paper copy of the contents of the current window, use the Print... command (in menu File). You
can use the Page Setup... command for general print settings.

As an alternative to printing, you can request the system to write a PostScript, HPGL, or PNG file. To do this,
use the PostScript..., HPGL, and PNG (Portable Network Graphics)... commands (in menu File /
Export).

For specific printing and PostScript settings, use the "Printing" preferences (in menu File / Preferences...,
"General" section, "Printing" tab).

The "For all
printing"
section at the
top has some
general
options. The
default is to
include the
entire cell,
but you can
choose to
print only
what is
highlighted
or only what
is displayed
by selecting
the
appropriate
buttons.

Note that when printing the highlighted area, a precise selection can be made with Area selection (see Section
2−1−3).

The "Plot Date In Corner" option causes additional information to appear in the corner of the plot.

The "Print resolution" is the number of dots−per−inch (DPI) that the printer expects. Higher resolutions use
more memory for the print image.

 Using The Electric VLSI Design System 81

#chap02-01-03
#chap02-01-03

There are many PostScript options, available in the lower section.

The "Encapsulated" checkbox causes the PostScript output to be insertable in other documents. •
There are three color choices: "Black&White", which uses stipple patterns for the layers; "Color"
which uses solid colors, but does not handle overlap (because PostScript does not handle
transparency); and "Color Stippled" which uses color stipple patterns for better overlap.

•

You can specify the size of the page (choose "Printer" for devices that print onto single pieces of
paper, and "Plotter" for devices that print onto continuous rolls of paper). The "Margin" field is the
amount of white space to leave on the sides. All distances in the "Height", "Width", and "Margin"
fields are in inches.

•

You can control the width of PostScript lines. Although they default to 1, this may be too thin on
some printers.

•

You can choose to rotate the image by 90 degrees so that it fits better on the page. The default is "No
Rotation", but the popup can switch to "Rotate plot 90 degrees" or "Auto−rotate plot to fit".

•

You can request that PostScript files be synchronized with the current cell. Clicking the "Set" button
prompts you for a file name, which is stored with the current cell. Whenever you write any
PostScript, Electric checks all synchronized cells to see if they are newer than their associated disk
file. If they are newer, the files are regenerated. Thus, you can specify PostScript files for many
different cells in a library, and when PostScript is generated, all of the files will be properly updated
to reflect the state of the design.

•

82 Using The Electric VLSI Design System

Chapter 4: Display

4−10: Text Windows

Some cells are textual in nature
(VHDL, Verilog, Netlists, or
Documentation), and cause text
to appear in the edit window.

When text editing, the standard
point−and−click commands
apply. You can use the Cut,
Copy, and Paste commands (in
menu Edit).

The contents of a text window can be saved to disk with the Text Cell Contents... command (in menu File /
Export) and restored from disk with the Text Cell Contents... command (in menu File / Import).

Note that there is no "saving" of text windows because they are editing internal data structures. Therefore
every change updates the information in Electric (but the library must be saved to truly preserve changes).

Searching is done with the
Find Text... command (in
menu Edit / Text). You can
find and/or replace text with
the appropriate buttons. Check
boxes allow the search to be
case sensitive, have regular
expressions, and to go in the
reverse direction. In addition,
you can jump directly to a
specified line number.

 Using The Electric VLSI Design System 83

Interestingly, the Find Text... command can also be used outside of the text edit window. If you are editing a
layout or schematic, this dialog will search all of the node, arc, export, and other names. The checkboxes in
the "Objects to Search" area control which of these pieces of text will be considered. "Automatically
Generated" names are those created for you by the system. They can be included in the search but normally
are not.

84 Using The Electric VLSI Design System

Chapter 4: Display

4−11−1: Introduction

Electric has the ability to view an integrated circuit in 3−dimensions as shown below, allowing a fuller
understanding of the interaction between layers. When displaying 3D, you can rotate, zoom, and pan the
image to get a better view, however you can no longer change the circuit.

The 3D View is based on Java3D,
the Java interface for interactive 3D
graphics. Because not everyone has
a full 3D capability on their
computer, the 3D facilities are
dependent on these extra
installations:

Java3D is the core 3D
package and must be
installed.

•

3D axes is an optional extra
download from Static Free
Software that shows a 3D
axis.

•

JMF is an optional package
from Sun Microsystems that
enables animation.

•

Animation is an optional
extra download from Static
Free Software that does
animation (it needs JMF).

•

See Section 1−5 for details about
getting these extensions.

To see the 3D view of a layout cell, use the 3D View command (in menu Window / 3D Window). The cell is
displayed in 3D, and mouse movements will rotate, pan, or zoom the circuit. Use the left button to rotate, the
right button for panning, and the middle one for zooming. When zooming, drag the middle button in one
direction to zoom in, and the other direction to zoom out. Standard pan and zoom operations (in menu
Window) are also available (see Section 4−4−1 and Section 4−4−2).

Each layer of a node or arc is drawn as a separate object in the 3D view. If you click on a node or arc in a 2D
view, all of its layers will be highlighted in the 3D view. Conversely, clicking on any layer of a node or arc in
the 3D view will show the entire component in the 2D view.

 Using The Electric VLSI Design System 85

#chap04-04-02

Cell instances will be
drawn as bounding boxes if
they are unexpanded (top
illustration), and will show
their contents if expanded
(bottom illustration).

Troubleshooting

If you are running on Windows and are using MDI mode (multiple document interface) the 3D display may
not work properly. See Section 1−4 for instructions on running Electric in SDI mode.

Because Java3D makes use of the graphics hardware on your computer, it may be useful to test that hardware
with the Test Hardware command (in menu Window / 3D Window).

86 Using The Electric VLSI Design System

4−11−2: 3D Preferences

To control the 3D view, use the "3D" preferences (in menu File / Preferences..., "Display" section, "3D"
tab). This provides access to most of the parameters that control 3D viewing. The only other controls
available are the colors used to draw 3D features, which are available in the "Colors" preferences (see Section
4−6−2).

In the 3D preferences, the thickness and Z distance (height) of each layer can be controlled as well as the
view mode, the Z−axis scale, and use of antialiasing.

On the left side of this
dialog is a list of layers
in the current technology.
On the right side is a
cross sectional view of
the chip, showing the
relative position of each
layer. You can select a
layer by clicking on
either side of the dialog.
The currently selected
layer is highlighted in the
list on the left and shown
in red in the right−hand
view. Change the "3D
HIGHLIGHTED
INSTANCES" entry in
the "Color" preferences
to change the color used
for highlighting layers in
the 3D view and in the
preferences.

The distance of the layer
from the wafer bottom
and its thickness are the
most important values.
These values are not only
used for the 3D view;
they are also used
whenever layers are
presented in "height"
order. Once selected, you
can type new values into
the "Thickness" and
"Distance" fields.

 Using The Electric VLSI Design System 87

chap04-06-02.html
chap04-06-02.html

By default, a perspective view is shown. Uncheck "Use Perspective" to see a parallel display. Antialiasing
can be turned on by checking "Use Antialiasing". Due to performance issues, antialiasing is not on by default.

The transparency option controls whether you can see through layers, allowing finer control of the display.
The transparency factor ranges from 0 (fully opaque: not transparent at all) to 1 (completely transparent: an
invisible shape). The transparency mode sets the rasterization technique to use during rendering. Possible
values are NONE, BLENDED, FASTEST, NICEST or SCREEN DOOR. The default setting of "NONE"
indicates that all objects are opaque. Refer to www.j3d.org for technical details.

Other controls are available in this dialog, for example the initial zoom factor and rotation. If the displayed
layers are too thin along the Z axis (compared to their X and Y values), use the "Z Scale" field to make
everything thicker.

Lights

The 3D view uses one the ambient (background) light and two directional lights. The ambient light is always
on, but the directional light can be enabled or disabled with the checkboxes.

The directional lights sit outside of the circuit and point in the given direction. The default directions of (−1,
1, −1) and (1, −1, −1) illuminate the 3D view from the front. Although the lights have a default color of
white, this can be changed by editing the "SPECIAL: 3D DIRECTIONAL LIGHT" entry in the "Color"
preferences.

Ambient light is the background light that fills a room. It is used to illuminate those areas that are not directly
hit by the directional lights. The default color of the ambient light is gray, but this can be changed by editing
the "SPECIAL: 3D AMBIENT LIGHT" entry in the "Color" preferences.

If Java3D is not
installed, the distance
and the thickness can
still be controlled. In
such a situation, the
3D preferences dialog
has much more limited
information.

88 Using The Electric VLSI Design System

http://www.j3d.org

4−11−3: Behaviors and Animation

Behaviors are controls that affect the 3D display. In Electric, there are 3 types of behaviors available.

Orbit Behavior combines three
basic mouse behaviors: zoom, pan
and rotate. The left button rotates,
the right button pans, and the
middle button zooms. Click and
drag to alter the display.

1.

3D Axis Behavior is available
when the 3D axis is shown.
Clicking on the axis affects
rotation (but not panning or
zooming). This axis is not part of
the standard Electric distribution
and must be installed separately
(see Section 1−5).

2.

Navigator Behavior is controlled
by special keys. Use the
up/down/left/right arrow keys as
shown in the table.

3.

Key Press Effect

DOWN Arrow Move along −Z axis

UP Arrow Move along +Z axis

CTRL + DOWN Arrow Move along −Y axis

CTRL + UP Arrow Move along +Y axis

ALT + LEFT Arrow Move along −X axis

ALT + RIGHT Arrow Move along +X axis

RIGHT Arrow Rotate along −Y axis

LEFT Arrow Rotate along +Y axis

CTRL + RIGHT Arrow Rotate along −Z axis

CTRL + LEFT Arrow Rotate along +Z axis

ALT + DOWN Arrow Rotate along −X axis

ALT + UP Arrow Rotate along +X axis

Animation

A 3D display can be animated by creating "key frames" along a time line. Interpolators examine the key
frames and smoothly animate the 3D view. There are two types of interpolators: simple and path. Simple
interpolators have a start and end frame, varying the view between them linearly. Path interpolators allow
multiple key frames to combine into a single smooth animation.

Spline interpolators can be created and
controlled with the Capture
Frame/Animate command (in menu
Window / 3D Window). To animate, you
must create a sequence of key frames that
define the view changes. Each key frame
represents a different 3D view of the scene.

To control the animation, make changes to the display and click "Enter Frame". You can enter as many
frames as you want and animate them later. The animated sequence is a "demo" that can be saved to disk and
restored later for playback. Use the Animate Sample Cell command (in menu Help / Samples) to see an
example of animation.

A QuickTime movie can be created by using the "Create Movie" button. For this option, the JMF plugin must
be available (see Section 1−5).

 Using The Electric VLSI Design System 89

Chapter 4: Display

4−12−1: Digital
Waveform Windows

The waveform window is able to display digital simulation output. This simulation output can come from
external simulators (such as Verilog and ArchSim) or built−in simulators (such as ALS and IRSIM). When
displaying the results of external simulators, the system reads the simulation output and shows it. When
internal simulators are displayed, you have the additional capability of changing the stimuli.

The digital waveform window looks like the picture below. Note also that there is a side bar with a cell
explorer in the window, just like in all windows, but the explorer has a "SIGNALS" section that lists the
signals found in the simulation.

Wave Panels

The waveform window contains a set of panels, each with a signal name and signal waveform. In each panel,
signal names are shown on the left, and their waveform on the right. Between the name and the waveform are
two control buttons:

Close (an "X") to remove that panel from the waveform window.•
Hide to stop displaying the panel, but keep it available (it can be restored by selecting its name from
the popup at the top of the waveform window).

•

The waveforms can be single signals or busses. Busses are collections of single signals that display integer
values (for example, "himb[1:10]"). To expand a bus, and show its individual signals in separate panels,
double−click on its name. To contract the bus (removing its individual signals), double−click on the bus
name again.

Although the color of the waveforms is usually the same, it can vary with the strength of the signal. To enable
such a display, check "Multistate display" in the "Simulators" preferences (in menu File / Preferences...,
"Tools" section, "Simulators" tab). To control the actual colors used in multistate display, use the "Colors"
preferences (in menu File / Preferences..., "Display" section, "Colors" tab) and set the colors for

90 Using The Electric VLSI Design System

"WAVEFORM: OFF STRENGTH", "WAVEFORM: NODE (WEAK) STRENGTH", "WAVEFORM:
GATE STRENGTH", and "WAVEFORM: POWER STRENGTH".

You can select a signal by selecting either its name or the actual waveform. A selected signal is highlighted,
and the selected panel is marked with a bold white line (see the "out" signal). Note that when you click on a
signal, the equivalent network in the associated schematic or layout window is also highlighted.

You can rearrange the order of the signals by dragging their names to a new location.

You can add a new panel to the waveform window by double−clicking on its name in the "SIGNALS" area
(or by dragging that name to the waveform part on the right). If the layout or schematics cell that produced
the simulation is being displayed in another window, and the currently selected network in that window is
found in the simulation output, then that output can be added to the waveform window with the Add to
Waveform in New Panel command (in menu Edit / Selection).

The order of signals in the waveform window is saved in the original cell so that subsequent simulations will
show the same signals.

Time Control

Two vertical cursors appear in the window, called "main" and "extension" (the extension cursor is dotted).
Their time values and their difference are shown at the top of the window. You can click over the cursors and
drag them to different time locations. You can also use the "Center" buttons to bring these cursors to the
center of the display.

The time axis of the simulation window can be controlled with the appropriate Window menu commands.
Use Zoom Out and Zoom In to scale the time axis by a factor of two. Use Focus on Highlighted to display
the range between the main and extension cursors.

Besides controlling time with menu
commands, you can also use the Pan and
Zoom tools of the toolbar to change the
view.

The pan tool lets you smoothly shift time when you click and drag. In the zoom tool, you zoom into an area
by clicking and dragging out that area. To zoom out, hold the shift key and click in the center of the desired
area.

The different panels in the waveform window are locked in time: they all show the same range of time, as
shown at the top of the waveform window. If you click on the "time lock" button at the top of the waveform
window (looks like a lock with the time on it:) then time is unlocked, and each panel has its own
time scale. Now individual panels can show a different range of time than the rest.

Electric does crossprobing between the waveform window and an edit window with the original circuit. If the
original circuit is being displayed, selection in the waveform window is mirrored in that cell. Also, whenever
the main time cursor changes, the electrical state of the circuit is shown in that cell. Wires are colored
differently according to their high/low/X/Z value in the simulation at that time. If you connect Simulation
Probe nodes to any part of the circuit, those nodes light up with the appropriate color instead, which allows
better visualization of activity patterns (see Section 7−6−3). You can control the colors used in crossprobing
by using the "Colors" preferences (in menu File / Preferences..., "Display" section, "Colors" tab) and setting
the colors for "WAVEFORM: CROSSPROBE LOW", "WAVEFORM: CROSSPROBE HIGH",

 Using The Electric VLSI Design System 91

#chap07-06-03

"WAVEFORM: CROSSPROBE UNDEFINED", and "WAVEFORM: CROSSPROBE FLOATING".

For best visualization of the simulation activity, there is a set of VCR buttons to control an animation of the
main time cursor. The play rate can be controlled by the "F" and "S" buttons which make it go faster or
slower. As the time cursor sweeps across the waveform window, the original circuit can be seen to change
levels.

These window functions apply to the digital simulation windows:

Window / Fill Window make all data fit in window.•
Window / Zoom Out show twice as much time.•
Window / Zoom In show half as much time. •
Window / Special Zoom / Focus on Highlighted show from main to extension cursors. •
Window / Pan Left show earlier time. •
Window / Pan Right show later time. •
"Pan" tool in tool bar freehand drag of time.•
"Zoom" tool in tool bar drag area to zoom in, hold shift to zoom out.•
"Measure" tool in tool bar for measuring time.•

Stimuli (for Built−in Simulators only)

When the waveform window displays the output of built−in simulators, you can set stimuli on the signals to
affect the simulation. Each stimulus that you set is marked with a large red box at the time of the stimulus
(see signals "cc" and "in"). You can select the stimuli by clicking on the red box. A selected stimulus has a
green box in it (see the rightmost stimulus on signal "in").

To set stimuli, select either a waveform or the equivalent network in the original schematic or layout. Once
selected, use the Set Signal High at Main Time (in menu Tool / Simulation (Built−in)) to make that signal
go to "high" at the time indicated by the Main cursor. Use Set Signal Low at Main Time to set the selected
signal "low", and use Set Signal Undefined at Main Time to set the selected signal "undefined" (X). Use the
Get Information about Selected Signals command to show stimuli and other information on the selected
signals.

Besides simple test vectors, the ALS simulator
can also set clock patterns on the currently
selected signal by using the Set Clock on
Selected Signal... command. There are two
ways to specify a clock: by frequency (in cycles
per second) or period (in seconds).

Note that the clock cycles infinitely, but Electric generates simulation events to fill only the current waveform
window. If you want more clock events generated, zoom−out the waveform window before issuing the clock
command.

To remove the selected stimulus, use the Clear Selected Stimuli command. To remove all stimuli on a the
selected waveforms, use Clear All Stimuli on Selected Signals. To remove all stimuli in the simulation, use
Clear All Stimuli.

Once a set of stimuli has been established, you can save it to disk with the Save Stimuli to Disk... command.
These stimuli can be restored later with the Restore Stimuli from Disk... command. Each built−in simulator

92 Using The Electric VLSI Design System

has its own format for saving stimuli.

The "Simulators" preferences (in menu File / Preferences..., "Tools" section, "Simulators" tab), offers some
controls for built−in simulators.

"Auto advance time" requests that the main time cursor advance after each stimulus is added. This
allows each stimulus added to occur at a new time.

•

"Resimulate each change" requests that the simulator rerun the simulation after any change to the
stimuli. Because the process of simulating a circuit can be costly, you might want to delay
resimulation until all stimuli have been set. If you uncheck this item, you must issue the Update
Simulation Window command to re−run the simulation.

•

Other Controls

At the top of the waveform window, above the signal names, are many useful controls. Those relating to time
have already been discussed. Here are the remaining buttons:

"Refresh" Refreshing the simulation causes it to reload from the original source. In the case
of external simulation, it is assumed that the simulation was re−run and the output file is different, so
the simulation output file is re−read. In the case of built−in simulators, it is assumed that the original
circuit has changed, so it is re−evaluated and reloaded into the simulator.

•

The Panel popup This is a list of all panels, including the hidden ones. Selecting a panel from this
list toggles its "hidden" state, making a visible one disappear, and making a hidden one reappear.

•

"Grow" and "Shrink" These buttons, which show a waveform being stretched or
squeezed, cause the minimum panel size to change. By shrinking the panel size, more of them can fit
in the window without having to use a slider to access them.

•

 Using The Electric VLSI Design System 93

4−12−2: Analog Waveform Windows

The waveform window is able to display analog simulation output. This simulation output comes from
external simulators (such as Spice). When the system is asked to display the results of an external simulation,
it reads the simulation output and shows it.

The analog waveform window looks like the picture below. Note that there is a side bar with a cell explorer
in the window, just like in all windows, but the explorer has a "SIGNALS" section that lists the signals found
in the simulation (and optionally a "SWEEPS" section if swept data was found).

Wave Panels

The waveform window contains a set of panels, each with one or more signals and waveforms. In a panel,
signal names are shown on the left, and their waveform on the right. Above the signal names in each panel
are 5 names and controls:

Panel number each panel is numbered so that it can be hidden and retrieved.•
Close (an "X") to remove the panel from the waveform window.•
Hide to stop displaying the panel, but keep it available (it can be restored by selecting its name from
the popup at the top of the waveform window).

•

Remove Signal remove the selected signal from the panel (the DELETE key works for this, too).•
Remove All Signals remove all signals from the panel.•

94 Using The Electric VLSI Design System

You can select a signal by selecting either its name or the actual waveform. Note that when you click on a
signal, the equivalent network in the associated schematic or layout window is also highlighted.

You can rearrange the order of the signals by dragging their names to their desired location. You can change
the color of a signal by right−clicking on its name.

You can add a signal to the list by double−clicking on its name in the "SIGNALS" area (or by dragging that
name to the waveform part on the right). The signal will be added to the highlighted panel (the one with the
bold vertical axis). You can create a new panel, with no signals in it, by clicking on the button in the
upper−left of the waveform window (looks like: a panel−with−waveform icon being dropped down).

If the simulation had sweeps, those values are shown in the cell explorer in the "SWEEPS" area. You can
right−click on a sweep and choose to include or exclude it from the display. You can also request that a
sweep signal be highlighted. Right−clicking on the "SWEEPS" icon lets you include or exclude all of them.

If the layout or schematics cell that produced the simulation is being displayed in another window, and the
currently selected network in that window is found in the simulation output, then that output can be added to
the waveform window with the Add to Waveform in New Panel command (in menu Edit / Selection). The
command Add to Waveform in Current Panel overlays the signal on top of others in the currently selected
waveform panel.

The order of signals in the waveform window is saved in the original cell so that subsequent simulations will
show the same signals.

Time Control

Two vertical cursors appear in the window, called "main" and "extension" (the extension cursor is dotted).
Their time values and their difference are shown at the top of the window. You can click over the cursors and
drag them to different time locations. You can also use the "Center" buttons to bring these cursors to the
center of the display.

The time axis of the simulation window can be controlled with the appropriate Window menu commands.
Use Zoom Out and Zoom In to scale the time axis by a factor of two. Use Focus on Highlighted to display
the range between the main and extension cursors.

Besides controlling time with menu
commands, you can also use the Pan and
Zoom tools of the toolbar.

The pan tool lets you smoothly shift time when you click and drag. In the zoom tool, you zoom into an area
by clicking and dragging out that area. To zoom out, hold the shift key and click in the center of the desired
area.

You can control the horizontal and
vertical range precisely by
double−clicking in the vertical scale
area. The dialog lets you type exact
values into the ranges.

 Using The Electric VLSI Design System 95

The different panels in the waveform window are locked in time: they all show the same range of time, as
shown at the top of the waveform window. If you click on the "time lock" button at the top of the waveform
window (looks like a lock with the time on it:) then time is unlocked, and each panel has its own
time scale. Now individual panels can show a different range of time than the rest.

A set of VCR buttons is available to animate the main time cursor. The play rate can be controlled by the "F"
and "S" buttons which make it go faster or slower. As the time cursor sweeps across the waveform window,
the original circuit can be seen to change levels.

These window functions apply to the analog simulation windows:

Window / Fill Window make all data fit in window.•
Window / Zoom Out show twice as much time.•
Window / Zoom In show half as much time.•
Window / Special Zoom / Focus on Highlighted show from main to extension cursors.•
Window / Pan Left show earlier time.•
Window / Pan Right show later time.•
"Pan" tool in tool bar freehand drag of time.•
"Zoom" tool in tool bar drag area to zoom in, hold shift to zoom out.•
"Measure" tool in tool bar for measuring time.•

Other Controls

At the top of the waveform window, above the signal names, are many useful controls. Those relating to time
have already been discussed. Here are the remaining buttons:

"Refresh" Rereads the simultion output file and updates the display. If the simulation has
been re−run, and the output file is different, then this button shows the new data.

•

"Show Vertices" Displays dots on the vertices of the waveforms. The button toggles
between showing and not−showing the vertex dots.

•

"Show Grid" Displays a grid in the waveform panels. The button toggles between showing
and not−showing the grid.

•

The Panel popup This is a list of all panels, including the hidden ones. Selecting a panel from this
list toggles its "hidden" state, making a visible one disappear, and making a hidden one reappear.

•

"Grow" and "Shrink" These buttons, which show a waveform being stretched or
squeezed, cause the minimum panel size to change. By shrinking the panel size, more of them can fit
in the window without having to use a slider to access them.

•

96 Using The Electric VLSI Design System

Chapter 5: Arcs

5−1: Introduction to Arcs

The arcs in a circuit are much more than
simple connecting wires. They can take many
different forms according to the needs of the
design environment. In schematics, arcs can
be negated, directional, zig−zag, and more. In
layout, they can be directional and extended
by half of their width.

The most important property of an arc is its ability to remain connected when physical changes are made to
the circuit. Constraining properties provide for intelligent circuit layout.

Electric allows you to control how layout changes when the circuit is modified. This is done by placing
constraints on the arcs that react to node changes. Electric has a set of four constraints that, although not
complete, have been found to be useful in circuit design.

 Using The Electric VLSI Design System 97

Chapter 5: Arcs

5−2−1: Rigid and
Fixed−Angle Arcs

The first constraint in Electric is the rigid constraint.
When an arc is made rigid, it cannot change length. If a
node on either end is moved, the other node and the arc
move by the same amount. Besides keeping a constant
length, rigid arcs attach in a fixed way to their nodes.
This means that if the node rotates or mirrors, the arc
spins about so that the overall configuration does not
change. Without this rigidity constraint, arcs simply
stretch and rotate to keep their connectivity.

The second constraint, which is used only if an arc is not
rigid, is the fixed−angle constraint. This constraint
forces a wire to remain at a constant angle (usually used
to keep horizontal and vertical wires in their Manhattan
orientations). For example, if a vertical fixed−angle arc
connects two nodes, and the bottom node moves left,
then the arc and the top node also move left by the same
amount. If that bottom node moves down, the arc simply
stretches without affecting the other node. If the bottom
node moves down and to the left, the arc both moves
and stretches. Rotation of nodes causes no change to
fixed−angle arcs unless the arc is connected to an
off−center port, in which case a slight translation and
stretch may occur.

Most IC layout is done with Manhattan geometry. If you suspect that some of your wires have become
skewed, use the Show Nonmanhattan command (in menu Edit / Cleanup Cell).

5−2−2: Slidable Arcs

Another constraint, available only for nonrigid arcs, is slidability. When an arc is slidable, it may move about
within its port. To understand this fully, you should know exactly where the arc endpoint is located. Most
arcs are defined to extend past the endpoint by one−half of their width. This means that the arc endpoint is
centered in the end of the arc rectangle. If the arc is 2 wide, then the endpoint is indented 1 from the edge of
its rectangle. All arc endpoints must be inside of the port to which they connect. If the port is a single point,
then there is no question of where the arc may attach. If, however, the port has a larger area, as in the case of
contacts, then the arc can actually connect in any number of locations.

98 Using The Electric VLSI Design System

Slidable arcs may adjust themselves within the port area rather than move. For example, if a node's motion is
such that the arc can slide without moving, then no change occurs to the arc or to the other node. Without the
slidable constraint, the arc moves to stay connected at the same location within the port. Slidability
propagation works both ways, because if an arc moves but can slide within the other node's port, then that
node does not move. Note that slidability occurs only for complete motions and not for parts of a motion. If
the node moves by 10 and can slide by 1, then it pushes the arc by the full 10 and no sliding occurs. In this
case, only motions of 1 or less will slide.

Because ports have area, and because arcs end somewhere inside of that area, the actual ending point can
vary considerably. If the arc is at the far side of the port, it may protrude out of the far side of the node,
causing unwanted extra geometry. You can shorten an arc so that its endpoint is at the closest side of the port
with the Shorten Selected Arcs command (in menu Edit / Cleanup Cell).

5−2−3: Constraint Propagation

The last of Electric's constraints is the only one that is not actually programmable by the user.

This is the constraint that all arcs
must stay in their ports, even
across hierarchical levels of
design. When a node in a cell
moves, and has an export on it, all
the ports on instances of that cell
also change. The constraint
system therefore adjusts all arcs
connected to those instances, and
follows their constraints. If those
constraints change nodes with
exports in the higher−level cell,
then the changes propagate up
another level of hierarchy.

This bottom−up propagation of changes guarantees a correctly connected hierarchy, and allows top−down
design. Users can create skeleton cells that are mostly empty and contain only exports on unconnected nodes.
They can then do high−level design with these skeleton cell instances. Later, when circuitry is placed in the
cells, or when layout views are substituted for the skeletons, the constraint system will maintain proper
connectivity in all higher levels of hierarchy.

The hierarchical−propagation aspect of the constraint system leaves open the possibility of an
overconstrained situation. For example, if two different cell instances are connected to each other with two
rigid wires, and one connection point moves, then it is not possible to keep both wires rigid. Electric jogs an
arc, converting it into three arcs that zig−zag, to retain the connection. Although connectivity is retained, the
geometry may be in the wrong place, causing unexpected changes to the circuit. Users are encouraged to
examine the hierarchy to make sure that arbitrary hierarchical changes do not cause undetected damage to the
layout. Electric will warn you of any changes which affect undisplayed cells farther up the hierarchy.

 Using The Electric VLSI Design System 99

Chapter 5: Arcs

5−3: Setting Constraints

The two most common constraints, rigid and fixed−angle (see Section 5−2−1), can be controlled from the
Edit / Arc menu. When the Rigid, Non Rigid, Fixed Angle, and Not Fixed Angle commands are issued, all
of the currently highlighted arcs have those constraints set.

In order to set slidability (see Section 5−2−2), select a single arc and issue the Object Properties... command
(in menu Edit / Properties).

At the bottom of the arc
properties dialog, when the
"More" button has been pressed,
are check boxes that control
constraints. This is the only way
to affect the slidable constraint
(which is not very commonly
used).

100 Using The Electric VLSI Design System

#chap05-02-02

Chapter 5: Arcs

5−4−1: Directionality

For documentation purposes, it is possible to display
a directional arrow on arcs to indicates flow. This
property can be changed with the Toggle
Directionality command (in menu Edit / Arc). It
may also be controlled by the Object
Properties... dialog (in menu Edit / Properties).

The controls in the Object Properties... dialog offer the option of placing the arrow head on either end, both
ends, or neither end. This allows arbitrary combinations of arrow heads and bodies to display arbitrarily
intricate directionality schemes.

5−4−2: Negation

Arcs in the Schematic technology may be negated,
which causes them to have a bubble drawn where
they attach to schematic elements. This property can
be changed with the Toggle Port
Negation command (in menu Edit / Technology
Specific). It may also be controlled by the Object
Properties... dialog (in menu Edit / Properties).
Note that you can select an arc to toggle negation
(which leaves the system to guess which end you
want to negate) or you can select a node and port (in
which case, the arc attached to that port is negated).

Note that the Object Properties... dialog offers precise control of the negating bubbles, allowing you to
specify which ends have the bubbles on them. Negated arcs make no sense in layout technologies and are
ignored.

 Using The Electric VLSI Design System 101

5−4−3: End Extension

All arcs are drawn so that their
geometry extends beyond their
endpoints by one−half of their width.
This property can be set or reset with
the Toggle End Extension of Head and
Toggle End Extension of
Tail commands (in menu Edit / Arc). It
may also be controlled by the Object
Properties... dialog (in menu Edit /
Properties).

5−4−4: Naming

Another property of an arc is its name. This is a character string that is displayed on the arc and used to name
the electrical network connected to that arc. The "Name" field in the Object Properties... dialog allows you
to specify this property, which is then displayed on the arc. Note that creating exports is another way of
naming a network. See Section 6−9−2 for more on network naming.

All arcs are named in Electric, so if you don't give it a name, one will be assigned. These names, which
typically take the form "object@number" are temporary names, and are distinguished from the names given
by the user.

Arc names can be quite complex when applied to busses. The names can be indexed, aggregated, and
otherwise be used to describe multiple signals. See Section 6−9−3 for more on bus naming.

5−4−5: Curvature

An unusual arc property, used only in circular geometry, is curvature. Although most arcs cannot handle
curvature, those in the Artwork and Round CMOS ("rcmos") technologies can.

The Curve through Cursor command (in menu
Edit / Arc) requests that the currently highlighted
arc curve in such a way that it passes through the
location of the cursor. The Curve about
Cursor command requests that the currently
highlighted arc curve between its endpoints such
that the center of curvature is at the location of
the cursor. After issuing these commands, click
and drag to see how the arc will curve.

The Remove Curvature command makes the arc straight.

102 Using The Electric VLSI Design System

#chap06-09-02
#chap06-09-03

Chapter 5: Arcs

5−5: Default Arc
Properties

The "New Arcs" preferences (in menu File / Preferences..., "General" section, "New Arcs" tab) lets you
control the arc creation process. It does not affect existing arcs: they have already been created.

The top part of the dialog allows you to set defaults for specific types of arcs in the current technology. You
select the "Arc Type" and then set defaults for it (such as the "Default width").

The "Placement angle" is the granularity for running this type of arc (in degrees). A value of 90 lets arcs run
at 0, 90, 180, or 270 degrees: manhattan geometry. A value of 45 lets it run at any of 8 angles (useful for
schematics). A value of 0 lets it run at any angle (used in artwork).

The "Pin" is the node that gets used for connecting two of these arcs. It is typically a "Pin" node (see Section
7−1−1). If changed to a node with geometry (such as a contact node) then these contacts will be placed at the
bends of this arc.

The checkboxes in the "Default State" section have these meanings:

Rigid − whether the
arc is rigid in length
and relationship to
its nodes (see
Section 5−2−1).

•

Fixed−angle −
whether the arc stays
at the same angle
when one end moves
(see Section 5−2−1).

•

Slidable − whether
the arc slides around
in its node's port (see
Section 5−2−2).

•

Directional −
whether the arc has
an arrow drawn on it
(see Section 5−4−1).

•

Ends extended −
whether the arc
extends past its
endpoint by half its
width (see Section
5−4−3).

•

The bottom portion of the dialog has controls for all arcs.

 Using The Electric VLSI Design System 103

#chap05-02-02
#chap05-04-03
#chap05-04-03

"Play 'click' sounds when arcs are created" − plays a sound to confirm arc creation. The sound is a
single click for one arc, a double−click for two arcs, and a triple−click for three or more arcs.

•

"Duplicate/Array/Paste increments arc names" − sets whether the name on an arc should be kept
unique by auto−incrementing after this arc has been duplicated, arrayed, or pasted.

•

104 Using The Electric VLSI Design System

Chapter 6: Advanced Editing

6−1: Making Copies

Once you have created a collection of objects, it may be desirable to have other identical copies. There are
two ways to do this: by duplication, and by cut−and−paste.

Duplication

The Duplicate command (in menu Edit) makes a copy of the selected nodes and arcs. After issuing this
command, you can move the cursor to any location and click to place the copy. While moving the cursor, an
outline of the duplicated objects is shown (as well as the amount of motion).

If you have disabled "Move after Duplicate" (in the "New Nodes" preferences, in menu File / Preferences...,
"General" section, "New Nodes" tab) then the duplicated objects are placed immediately without dragging.

If any of the nodes have exports on them, they are not duplicated (unless "Duplicate/Array/Paste copies
exports" is set in "New Nodes" tab).

The Duplicate command forces newly created nodes and arcs to have unique names. This means that if any
nodes or arcs are named (using the Object Properties... command, in menu Edit / Properties) and then
duplicated, the new ones will have different names (specifically, the old names with numbers appended or
modified).

Cut−and−Paste

Another way to make copies of nodes and arcs is with the cut−and−paste commands. The Copy and
Cut commands (in menu Edit) copy the currently selected nodes and arcs to a special buffer. Cut also
removes the objects after copying them. The Paste command then copies the objects from the special buffer
to the display. After issuing this command, an outline of the pasted objects attaches to the cursor. When you
click, the objects are placed at that location. You can right−click during the paste drag to affect the location,
and to abort the paste.

Note that if you copy a node or arc and then select another before pasting, then the copied object will replace
the selected object (changing its type and other properties, similar to the Change... command, in menu Edit,
see Section 6−6). If you want the Paste command to make a second copy, be sure that nothing is selected
when you issue the command. Thus, duplicating an object cannot be done by issuing a Copy and then a
Paste. You must do a Copy, then deselect the object, then do a Paste.

 Using The Electric VLSI Design System 105

Chapter 6: Advanced Editing

6−2: Creation Defaults

The Duplicate command is useful because a node may have been modified (rotated, scaled, etc.) and
duplication preserves all of those changes. Using Copy and Paste does the same thing. Another way to create
nodes that are nonstandard is to set creation defaults.

To do this, use the "New
Nodes" preferences (in
menu File / Preferences...,
"General" section, "New
Nodes" tab). The top part
of the dialog controls
primitive nodes. You can
change the default size of
any primitive node in the
current technology by
choosing the node and
changing the values.

The middle section of the dialog controls cells. The check box "Check cell dates during editing" requests that
date information be used to ensure a proper circuit building sequence. When this box is checked, warning
messages will be issued when editing a cell that has more recent subcell instances. Electric tracks cell
creation and revision dates, and this information can be displayed with the Describe this Cell command and
others in menu Cell / Cell Info (see Section 3−7−1).

The check box "Switch technology to match current cell" requests that the current technology automatically
change whenever the current cell changes, so that the two match.

The check box "Place Cell−Center in new cells" requests that all newly created cells have a Cell−Center node
placed at the origin (see Section 3−3 for more on Cell centers).

The bottom part of the dialog applies to all nodes.

106 Using The Electric VLSI Design System

The check box "Disallow modification of locked primitives" requests that all lockable primitive node
instances be anchored. Once locked, these nodes cannot be created, deleted, or modified in any way.
Typically, only primitives in "array" technologies are lockable (such as the FPGA technology, see Section
7−6−2), presuming that these components will be used to define the fixed circuitry that is then customized.
Design of the fixed circuitry is done with this lock off, and then the customization phase is done with this
lock on.

The check box "Move after Duplicate" allows duplicated objects to be positioned interactively. This is the
default condition. However, if this is unchecked, then the Duplicate command (in menu Edit) will place a
copy automatically, without allowing the new location to be specified by the cursor.

The check box "Duplicate/Array/Paste copies exports" requests that these node−copying operations also copy
their exports. This includes the Duplicate, Array, and Paste commands (in menu Edit) . See Section 6−4 for
more on arrays.

The check box "Extract copies exports" requests that extraction of cell instances also copy the exports.
Extraction is done with the Extract Cell Instance command (in menu Cell). See Section 3−8 for more on
extraction.

 Using The Electric VLSI Design System 107

#chap07-06-02
#chap07-06-02

Chapter 6: Advanced Editing

6−3: Preferences

The Preferences... command (in menu File) contains dozens of
panels for controling preferences. You can also see the
preferences dialog by using the preferences icon from the tool
bar.

The left side of the Preferences dialog is a tree−structured list of all of the different preference panels. The
right side is the actual preference panel, which changes according to the panel requested. Below the list of
panels is a "Help" button which takes you to the proper manual page which explains that panel.

Preferences are stored permanently on your computer and are remembered each time you run Electric. The
actual location of this information varies with each operating system.

Windows: In the registry. Look in: HKEY_CURRENT_USER / Software / JavaSoft / Prefs / com /
sun / electric.

•

108 Using The Electric VLSI Design System

UNIX/Linux: In your home directory. Look in: ~/.java/.userPrefs/com/sun/electric •
Macintosh: In your home directory, under Library/Preferences. Look at:
~/Library/Preferences/com.sun.electric.plist

•

You can delete the appropriate data to reset Electric to its "factory" state.

You can also export your preferences with the Preferences... command (in menu File / Export) which will
write an XML file with preference information. This XML file can be read back into Electric's preferences
with the Preferences... command (in menu File / Import).

There are two types of preferences: appearance and meaning. Appearance preferences affect only the way
Electric appears when run, and do not affect the actual circuitry. Meaning preferences affect the interpretation
of the data, and therefore their settings are critical to your design.

Electric stores meaning preferences in every library file so that, when read back in, the preferences can be
reconciled with current settings. When a library is read that has different meaning preferences, this dialog
appears:

You must choose whether you want to use the preference value from the library (recommended) or the
current setting. This can be done on an individual−preference basis, or for all preferences that conflict.

 Using The Electric VLSI Design System 109

Chapter 6: Advanced Editing

6−4: Making Arrays

If one copy is not enough, you may want an array of objects.

The Array... command (in menu Edit) takes the currently highlighted objects and replicates them many
times. You specify the number of replications in the X and Y directions and the geometry is arrayed.

Arrays are generated by X (row) with Y (column), following a raster scan order. If you request that alternate
rows or columns be flipped, then they are mirrored in the direction of repetition. If you request that alternate
rows or columns be staggered, then each element is offset by an alternating amount. If you request that the
rows or columns be centered, then the original circuitry will be placed in the middle of the array instead of
the corner. If the X or Y values are negative, then the array is laid out backwards (replications are placed in
the reverse direction).

There are four ways to specify spacing: edge overlap, centerline distance, characteristic spacing, or
measured distance. The edge overlap amounts indicate the amount by which the rows and columns will be
squeezed together (zero overlap causes the each arrayed copy to touch the next one, negative overlap can be
specified to spread the objects apart). Centerline distance is the distance between object centers, and defaults
to the size of the selected objects (which causes the copies to touch). Characteristic spacing is an amount that
is set for specific cells (see Section 3−7−3). If a cell with a characteristic spacing is arrayed, that value can be
used. Finally, the last measured distance can be used to determine the array spacing (for more on measuring,
see Section 4−7−4).

110 Using The Electric VLSI Design System

#chap03-07-03
#chap04-07-04

The "Linear diagonal array" check box indicates that the array is linear (one of the repeat factors must be 1)
but that both spacing rules will be applied. This therefore creates a single line that runs diagonally.

The "Generate array indices" check box requests that the array entries be drawn with index information.
When this is checked, array entries are labeled with the index of each entry. The original copy is labeled
"0−0" and the copy to its right is labeled "1−0". These names are simply visual tags that have no bearing on
the contents (use the Object Properties... command, in menu Edit / Properties, to set or remove these
names).

The "Only place entries that are DRC correct" check box requests that array entries only be placed where
they do not create design−rule violations. This option is only available if a single node is being arrayed. After
the array is created, the design−rule checker is run on each entry, and if it causes an error, it is removed.

The "Transpose placement ordering" check box requests that array placement go by column instead of by
row. This is useful if the arraying includes names which are being auto−incremented in the array. By
transposing the order of arraying, the names will run in the orthogonal direction.

 Using The Electric VLSI Design System 111

Chapter 6: Advanced Editing

6−5: Spreading Circuitry

When a large amount of circuitry has been placed too close together or too far apart, Electric's constraint
system can help. All that is necessary is to make all arcs in an area rigid and then move one node. Of course,
you may have to move more than one node if the one you pick is not connected to everything else you want
to move. Also, you must make sure that arcs connecting across the area boundary are nonrigid. Finally,
setting arc rigidity should be done temporarily so that it does not spoil an existing constraint setup. All these
operations are handled for you by the Spread... command (in menu Edit / Move).

With the Spread... command, the highlighted
node is a focal point about which objects
move. A dialog is presented in which an
amount and a direction (up, down, left, or
right) are specified. An infinite line is passed
through the highlighted node's center and
everything above, below, to the left of, or to
the right of the line is moved by the specified
amount.

Negative spread distances compact the circuit.

112 Using The Electric VLSI Design System

Chapter 6: Advanced Editing

6−6: Replacing Circuitry

The Change... command (in menu
Edit) removes the currently
highlighted node or arc and replaces it
with a new one of a different type.
This same effect can be had by
copying one object and then pasting it
onto another (see Section 6−1). A
dialog is presented in which the
possible replacements are shown. For
node changing, you can choose to
show primitives from the current
technology, cells from the current
library, or both.

When replacing an arc, the existing nodes on either end must be able to reconnect to the new type of arc. If
"Change nodes with arcs" is checked, nodes will be changed to allow the new type of arc to remain
connected.

When replacing a node, the existing arcs on it must be able to reconnect properly to the new node. However,
the sizes of the replaced object can be different, and the layout will be adjusted. Electric determines which
ports on the replaced node to use by examining the port names and locations. If the ports are aligned correctly
but not named the same, this matching will fail. Check "Ignore port names" to disable name matching and use
only position information. If the new node is missing essential ports, such that existing wires cannot be
reconnected, then the change will fail (unless "Allow missing ports" is checked).

Besides replacing the currently highlighted node or arc ("Change selected ones only"), it is also possible to
specify replacement of many other objects.

"Change all connected to this" requests that other objects of the same type which are connected to the
highlighted ones will be changed.

•

"Change all in this cell" requests that all other objects of the same type in this cell will be changed. •
"Change all in this library" requests that all other objects of the same type in the current library will
be changed.

•

"Change all in all libraries" requests that all other objects of the same type in every library will be
changed.

•

 Using The Electric VLSI Design System 113

This is a modeless dialog: it can remain up while other editing is being done. Click "Done" to dismiss it, and
"Apply" to make a change.

Note that some Schematic nodes use parameters to further describe them. For example, an electrolytic
capacitor is really just a capacitor with the "electrolytic" parameter on it. Therefore, you can change a node
into a capacitor, but not an electrolytic capacitor, because it is not in the list. To change a capacitor into an
electrolytic capacitor, paste an electrolytic capacitor onto it. Besides capacitors, parameters can be found on
diodes, transistors, sources, and two−ports (the four−connection primitives such as VCCS).

114 Using The Electric VLSI Design System

Chapter 6: Advanced Editing

6−7: Undo Control

Electric has an undo mechanism that tracks all changes made during a session. When a command is issued, it
and its side effects are stored.

The Undo command (in menu Edit) reverses the last change made (this includes any changes that may have
been made by other tools). Multiple uses of the Undo command continue to undo further back. The
Redo command redoes changes, up to the most recent change made.

You can also use the undo (counterclockwise) and redo
(clockwise) icons from the tool bar.

Electric stores only the last 40 changes, so anything older than that cannot be undone. To increase the number
of changes that are saved, use the "General" preferences (in menu File / Preferences..., "General" section,
"General" tab), and change the "Maximum undo history" field. To see a history of changes that were made,
use the Show Undo List command (in menu Edit / Info).

In Electric, almost every command is undoable, but there are some exceptions. Commands that write disk
files are not undoable, because Electric would not be so presumptuous as to delete a disk file. Also
commands that make vast changes (such as library deletion) are not undoable.

Another useful command in for controlling changes being made is Repeat Last Action (in menu Edit). This
repeats the last command, but only works for commands that can sensibly be repeated.

 Using The Electric VLSI Design System 115

Chapter 6: Advanced Editing

6−8−1: Understanding Text

There are a number of ways to place text in a circuit.

Each unexpanded instance of a cell has text that describes it, and its ports. •
Each export has a text label. •
Nodes and arcs can be named (with Object Properties...) so that they have text on them. They can
also have additional attributes that appear as text.

•

Certain primitive nodes (such as the Flip−Flop component of the Schematic technology) have text as
an integral part of their image.

•

It is even possible to create a special node that is only text (with some of the commands under the
"Misc" entry of the component menu: "Annotation Text", "Spice Code", "Verilog Code", and
"Verilog Declaration".

•

Essentially, then, every piece of text on the display is tied to some node or arc. By understanding the
relationships between text and the attached objects, it becomes easy to manipulate that text.

6−8−2: Selecting Text

The only category of text that is not selectable is the text that is integral to a node's graphics (i.e. the
Flip−Flop). For the rest, you can select and manipulate the text just as you would the object on which the text
resides. (Note that port names on cell instances are not selectable: instead, select their export name inside of
the cell definition.)

Certain types of text are not easily selectable. This is a feature that prevents accidental selection of unwanted
text. For such hard−to−select text, the only way to select them is to use special select mode (see section
2−1−5). By default, the name of an unexpanded cell instance is hard−to−select. However, you can also
request that names on nodes and arcs (annotation text) also be difficult to select by unchecking "Easy
selection of annotation text" in the "Selection" preferences (in menu File / Preferences..., "General" section,
"Selection" tab).

All text is attached to its node or arc
at an anchor−point. This is the one
point on the text that never moves,
regardless of the size of the text. The
highlighting of selected text varies
according to the anchor−point.
Typically, the highlighting consists of
an "X" through the text. This indicates
that the anchor−point is in the center.
If a "U" is drawn in any of four
orientations, it indicates that the
anchor−point is on the side and that
the text grows out of the opened end.
If an "L" is drawn in any of four
orientations, it indicates that the

116 Using The Electric VLSI Design System

#chap02-01-05
#chap02-01-05

anchor−point is in a corner.

Finally, the text may be drawn with an "X" but also have four lines that indicate a box at the object edge. This
is centered text that clips to the size of its attached object (it is boxed).

Note that text can be moved away from its
attached node or arc. If this has been done, then
selection of the text will also indicate the attached
component by drawing a dashed line to it.

6−8−3: Modifying Text

Like nodes and arcs, text can be moved simply by clicking and dragging. It can be erased with the
Erase command of the Edit menu (the Delete key).

To change text, double−click on it
and type new values. To change
other aspects of selected text, and
use the Object
Properties... command (in menu
Edit / Properties). This dialog
allows modification of the text,
size, font, style, anchor−point,
rotation, color, and even the offset
of the anchor−point from the
attached node or arc. Note that the
offset is always relative to the
center of the attached object. The
size of text can be absolute (given
in "points") or relative (given in
units). The font of the text can be
the default font or any font
installed on your system. The
style of text can be any
combination of Italic, Bold, or
Underline. Text rotation can be in
90−degree increments only. You
can set the units to any electrical
type (capacitance, resistance, etc.)
See section Section 7−2−2 for
more on these units.

The "Code" option allows the text to be code in an interpretive language, in which case, the evaluation of that
code is displayed. You can choose to show the text value, the name of the piece of text, or both.

If the text contains more than 1 line, then you must check "Multi−Line Text" in order to edit it. You may then
have to stretch the dialog in order to have a larger field for editing the text. The "Highlight Owner" button
highlights the node or arc on which the text is attached . The checkbox "Invisible outside cell" requests that
the text not be drawn when an instance of the cell is examined.

 Using The Electric VLSI Design System 117

#chap07-02-02

The Change Text
Size... command (in menu Edit
/ Text) allows you to change
the size, face, and style of any
text object. You can choose
which of the 6 classes of text
you wish to change, and you
can choose whether to make
the changes only on selected
objects, in the current cell, in
all cells of a particular view, or
everywhere.

118 Using The Electric VLSI Design System

6−8−4: Text Defaults

To change the default size and anchor−point of all new text, use the "Text" preferences (in menu File /
Preferences..., "Display" section, "Text" tab). The top part of the dialog determines which types of text will
be affected. The middle part lets you control how that type of text will appear in the future. You can set the
size, anchor−point, font, and style.

Below the "Default Text Style" section is a popup that sets the default font for Electric. Below that is a setting
for the "Global text scale". Normally, all text is drawn at 100% of its stated size. However, you can globally
scale all text by typing a value other than 100 into this field. You can also use the Increase All Text Size and
Decrease All Text Size commands (in menu Edit / Text) to change this value, and alter the size of all
displayed text.

The bottom part of
the dialog controls
"smart placement" of
text, which adjusts
the grab point
according to the
environment of the
text. This currently
applies only to
export names, which
are placed relative to
the arc connecting to
the exported node.
For example, if a
node on the left end
of a wire has an
export, and the
"Horizontal"
placement is set to
"Inside", then the
export text will
attach on the left
side, causing the
label to appear
inside of the wire.

 Using The Electric VLSI Design System 119

6−8−5: Text Attributes

You can place arbitrary text attributes on nearly any part of the circuit by using the Attribute
Properties... command (in menu Edit / Properties).

Attributes can be placed on these objects (selected at the top):

The current cell. •
The currently highlighted node. •
The currently highlighted arc. •
The currently highlighted export. •
The currently highlighted port on the currently highlighted node. •

The list of attributes is shown below that. You can create a new attribute by typing its name in the "Name:"
field, its value in the "Value:" field and then clicking the "Create New" button. You can delete an attribute
with the "Delete" button. An attribute's name can be changed with the "Rename" button.

Just below the name and value fields are a set of popups that control the attribute. The "Code" popup
determines whether the attribute is code or pure data. This can be changed to one of the interpretive
languages in Electric. When this happens, the attribute value is treated as code that is sent to that interpreter.

120 Using The Electric VLSI Design System

Then, the true value of the attribute is the evaluation of that code. For example, if the value of an attribute is
"3+5" and the attribute is set to be Java code, then the Java interpreter will be invoked, and the attribute will
actually be "8".

You can change the type of unit by using the "Units" popup (choices are capacitance, resistance, inductance,
current, voltage, or distance). See Section 7−2−2 for more on these units.

You can control the way that an attribute is displayed in the circuit by selecting the appropriate entry in the
"Show:" popup. You can request that various combinations of the attribute's name and value be displayed.

The bottom part of the dialog affects the appearance of the attribute, and is only relevant if the attribute is
being shown. The size of the text can be specified in relative or absolute units. The anchor−point of the text
can be set. The X and Y offset of the anchor−point from the attached object can be specified. The font of the
text can be chosen. The style of the text can be any combination of Italic, Bold, or Underline. You can
specify the rotation of the text, in 90−degree increments. You can even give the text a color. The "Invisible
outside cell" requests that the attribute not be drawn when viewed farther up the hierarchy.

The "Done" button terminates this dialog. Note that there is no "Cancel" button: this dialog makes changes as
they are entered.

Special Considerations

Attributes that are placed on cells or exports get inherited when the cell is instantiated. Each of these
attributes is created on the instantiated node and port. It is often desirable for each inherited attribute to have
unique names. If the value of a cell or export attribute has "++" in it, then the number before it will be
incremented after inheritance. Similarly, a "−−" indicates that the number be decremented after inheritance.
This allows an inherited attribute to be unique with each inheritance.

When there are too many visible attributes, the display can become cluttered. Use the "Layers" tab of the
sidebar to control the text, (see Section 4−5 for more). Attributes on nodes are controlled by the "Node Text"
checkbox; those on arcs with the "Arc Text" checkbox, etc.

6−8−6: Cell Parameters

When attributes are created on cells, they become parameters to that cell. Each instance of the cell has a copy
of the attribute placed on the node, and the node's attribute can then be set independently of the cell's
attribute. In such a situation, the node attribute's value is the "actual" parameter to the cell, and the cell
attribute's value is the "formal", or default parameter value.

One example of the use of cell parameters is in the Spice primitives, where user−defined values (such as
voltage) are communicated into the icon for generation in the Spice deck (see Section 9−4−3).

Another use of cell parameters is to parameterize the size of a transistor in a schematic (or to parameterize the
scalable layout transistors in the MOSIS CMOS technology, see Section 7−4−2) The transistor width and
length can be defined in terms of the parameter value, allowing a single cell to take on many different forms.
By combining these parameters with the interpretive language facility, an arbitrary mathematical expression
can be placed on the transistor which combines parameter values to form the exact transistor size .

Inside of the cell, the parameter is shown with its name and default value. To see the actual value from up the
hierarchy, create a Java expression with the value "@PNAME" where PNAME is the parameter name. For
example, if a cell has an attribute called "heat", you might place a piece of Annotation Text (with the

 Using The Electric VLSI Design System 121

#chap07-02-02
#chap09-04-03
#chap07-04-02

"Annotation Text" command under the "Misc" entry in the component menu) and name it "@heat". Make
sure to set its Code to Java. When first defined, the parameter has no actual value, and so appears as "heat not
found" . If an instance is created and its "heat" attribute is set to 7, then descending into that cell will show
"7".

If a parameter is added to a cell, existing instances of that cell may not get properly updated. To do this, use
the Update Attributes Inheritance on Node command (in menu Edit / Properties). To do this everywhere,
use the Update Attributes Inheritance all Libraries command.

Parameter Text

Parameters on cells are not tied to any node or arc. Instead, they float freely inside of the cell. You can select
the text and drag it to any location in the cell.

Parameters on instances of cells are placed at the same location as they appear inside of the cell. In
schematics, the location of a parameter on an icon is determined by the location of that parameter on the
sample icon, inside of the schematic cell.

If you do not wish to see a parameter's text on any instance, select the parameter text inside of the cell, use
the Object Properties... command (in menu Edit / Properties), and check "Invisible outside cell".

You can disable the display of parameters on cell instances by selecting them and using the Hide All
Attributes on Node command (in menu Edit / Properties). You can force all parameters to be displayed on
a cell instance by using the See All Attributes on Node command. To restore default parameter visibility on
a cell instance, use the Default Attribute Visibility command.

122 Using The Electric VLSI Design System

Chapter 6: Advanced Editing

6−9−1: Introduction to
Networks

A collection of electrically connected components defines a network. Networks may span many arcs, or they
may reside on only a single export on a single node. Because networks are stored in the Electric database,
they can be immediately accessed when needed.

Whenever a port on a node is selected, the highlighting indicates the entire network that is connected to that
port. Another way to see an entire network is to use the Show Network command (in menu Tool / Network).
This will highlight all arcs on the currently selected networks. Repeated use of this command causes the
network to be highlighted at successively lower levels of the hierarchy.

If the design is very dense, you can select one or more networks by name with the Select Object... command
(in menu Edit / Selection).

The Resistor can be treated as a
connecting or nonconnecting
node. By default, it does not
connect the networks on its two
ends, so identification of the
extent of a network ends at the
resistor. To ignore resistors and
treat them as wires, use the
"Network" preferences (in
menu File / Preferences...,
"Tools" section, "Network"
tab), and check "Ignore
Resistors". Then highlighted
networks will pass through
them. See section Section
7−5−1 for more on resistors.

The other controls in the
"Network" Preferences are
discussed elsewhere. For an
explanation of "Default bus
order", see Section 6−9−3). For
an explanation of the entries in
the "Node Extraction" section,
see Section 9−10−2).

 Using The Electric VLSI Design System 123

#chap06-09-03
#chap09-10-02

There are many commands in menu Tool / Network that can be used to get information about the networks
in a cell:

List Networks shows a list of the networks in the current cell. •
List Exports on Network lists all export names on the currently highlighted network. This list
contains the names of exports at all levels of the hierarchy, above and below the current cell. The
facility is useful if, for example, you have propagated clock lines throughout the circuit and wish to
make sure that all of the export names on this network have some variant of the name "phi". By
quickly examining this list, you can see all of the names that have been used on the network,
throughout the hierarchy.

•

List Exports below Network lists all export names on the currently highlighted network. This list is
similar to the one generated by List Exports on Network except that it works only on cells below
the current one.

•

List Connections on Network lists all nodes in the current cell that are connected to the current
network. This list includes only those nodes at the ends of the net, not the pin or contact nodes used
inside of the network. The command is useful if you are at one end of a wire and want to check to see
what is at the other end.

•

List Geometry on Network lists all geometry in the current cell that is connected to the current
network. This reports the area and perimeter of all attached layers.

•

List Total Wire Lengths on All Networks lists the lengths of all networks in the current cell.•

6−9−2: Naming Networks

Network names are derived from export names and arcs that are named in a cell. The name given to an export
becomes the network name for all arcs connected to that export. Similarly, the name given to an arc (by
setting the name field in the Object Properties... dialog) becomes the name of the network for all connected
arcs. You can rename a network by changing the name of a connected export or arc.

Two phenomena can occur in network naming: a network can be multiply named, and it can span disjoint
circuitry. A network has multiple names when two or more connected arcs or exports are named with
different names. For example, if you make an export on a contact node and call it "clock", then you select an
arc connected to that contact node and name it "sig", the circuitry will be on the network "clock/sig." Thus,
both names now apply to the same network.

The other phenomenon of network naming is that a single network can include unconnected parts of the
circuit. This happens when arcs in unconnected parts of the circuit are given the same name. This causes the
two arcs to be implicitly joined into one network. Because this network naming phenomena is most
commonly used in schematics, the unification of like−named networks only happens in cells with the
"schematic" view.

124 Using The Electric VLSI Design System

6−9−3: Bus Naming

The Bus arc of the Schematics technology is a special arc that can carry multiple signals (see Section 7−5−1).
When giving a network name to Bus arcs, it is possible to specify complex bus names.

Lists Bus names can be lists (for example, "clock,in1,out" which aggregates 3 signals into a 3−wide
bus) .

•

Simple arrays Bus names can be arrays (for example, "A[0:7]" which defines an 8−wide bus). •
Array index lists and ranges Arrayed bus names can have lists of values (separated by commas) or
ranges of values (using the colon). For example, the bus "b[0],c[3,5],d[1:2],e[8:6]" is an 8−wide bus
with signals in this order: b[0], c[3], c[5], d[1], d[2], e[8], e[7], e[6].

•

Multidimensional array indices Arrays can be multiply indexed (for example "b[1:2][100,102]"
defines a bus with 4 entries: b[1][100], b[1][102], b[2][100], and b[2][102]). You can have any
number of dimensions in an array.

•

Symbolic array indices It is possible to use symbolic indices in bus naming (for example, the bus
"r[x,y]" defines a 2−wide bus with the signals r[x] and r[y]).

•

When a bus is unnamed, the system determines its width from the ports that it connects. Some tools (such as
simulation netlisters) need to name everything, and so use automatically−generated names. When this
happens, the system must choose whether to number the bus ascending or descending. To resolve this issue,
use the "Network" preferences (in menu File / Preferences..., "Tools" section, "Network" tab), and choose
"Ascending" or "Descending".

Individual wires that connect to a bus must be named with names from that bus. As an aid in obtaining
individual signals from a bus, the Rip Bus command (in menu Edit / Arc) will automatically create such
wires for the selected bus arc.

Besides using array names on busses, you can also give array names to schematic nodes. Netlisters will create
multiple copies of that node, named with the individual elements of the array.

6−9−4: Power and Ground

Identification of a power network is done by finding:

a Power node from the Schematic technology; •
an export in the current cell that has the "power" characteristic; •
an export in the current cell that begins with the letters "vdd", "vcc", "pwr", or "power"; •
a port on a component in the current cell that has either of the above two properties. •

Ground networks use the same rules, except that the acceptable port names begin with "vss", "gnd", or
"ground".

All supply networks defined with the Power and Ground nodes of the Schematic technology are combined
into one network. This means, for example, that two arcs, each connected to a separate Ground node, appear
on the same network regardless of their actual connectivity in the circuit.

As a debugging aid for power and ground networks, the command Show Power and Ground (in menu Tool
/ Network) shows the entire power and ground network. The Validate Power and Ground command checks
all power and ground networks in the circuit. Any power or ground networks that are named according to the
prefixes listed above must have the proper characteristics. If, for example, a power network is called
"gnd007", then it will be flagged by this command.

 Using The Electric VLSI Design System 125

6−9−5: Global Networks

When wiring an IC layout, the only way to get a signal from one point to another is to physically place the
wires. Signals that span a large circuit, such as power and ground, must be carefully wired together at each
level of the hierarchy.

In schematics, however, it is often the case that a signal is used commonly without explicitly being wired or
exported. Examples of such signals are power, ground, clocks, etc. The power and ground signals can be
established in any schematic with the use of the Power and Ground nodes. To create another such signal, use
the Global node of the schematics technology (see Section 7−5−1).

The Global node is diamond−shaped, and it has a name and characteristic similar to exports (input, output,
etc.) All signals with the same global name are considered to be connected when netlisting occurs. Thus, the
Global symbol can be used to route clock signals, as well as to define multiple power and ground rails. Note
that with multiple power and ground rails, only one of them is the true "power and ground" as defined by the
Power and Ground symbols. All others, declared with Global nodes, are not true power and ground signals,
but are simply globals.

Global Partitioning

It is sometimes the case that the designer wishes to isolate a global signal and wire it differently. For
example, a schematic cell may be defined with power and ground symbols, connecting it to the global power
and ground. But a particular instance of the schematic may need to be wired to alternate power and ground
rails, for example "dirty power". Another example of rewiring happens when you want to test a specific
instance of a cell, and you need to connect its globals differently for the purposes of simulation.

The solution is to place a
"Global Partition" node inside
of the schematic (see Section
7−5−1). This symbol acts like
an "offpage" symbol: it is
wired to something inside of
the cell (a global signal) and it
is also exported to the outside
world.

In this example, the schematic has power and ground signals, but the power signal is also connected to a
Global Partition node and exported (as "vddR"). The icon has an extra connection for this power tap. In
normal use, the extra connections created by the Global Partition nodes do not need to be wired up, because
they connect to globals, and their connectivity is understood. If, however, the extra exports are wired, it
means that the signal inside of the cell is disconnected from the global, and connected instead to that wire.

In the example here, two "invR" icons
are placed, but one of them has its
"vddR" connection wired (to a
different power source). The
subcircuit for the rightmost icon will
not use the global power signal, but
will instead use the attached signal,
"vddInv".

126 Using The Electric VLSI Design System

Chapter 6: Advanced Editing

6−10−1: Introduction to
Outlines

For some primitive nodes, it is not enough to rotate,
mirror, and scale. These primitives can to be
augmented with an outline, which is a polygonal
description.

There are quite a few primitive nodes that make use of
outline information. The MOS transistors use the
outline to define the gate path in serpentine
configurations (see Section 7−4−1). The Artwork
technology has nodes that use outline information:
Opened−Solid−Polygon, Opened−Dotted−Polygon,
Opened−Dashed−Polygon,
Opened−Thicker−Polygon, Closed−Polygon,
Filled−Polygon, and Spline (see Section 7−6−1).

For arbitrary shapes on arbitrary layers, use the
pure−layer nodes in the IC layout technologies. The
pure−layer nodes are found under the "Pure" entry in
the component menu. For example, the node called
"Metal−1−Node" in the CMOS technologies looks
like a rectangle of the Metal−1, until you add outline
information. With an outline, this node can take any
shape.

Because pure−layer nodes are unusual, it is useful to be able to identify them. Use the Show Pure Layer
Nodes command (in menu Edit / Cleanup Cell) to highlight all of them in the current cell.

6−10−2: Manipulating Outlines

To manipulate outline information on the currently
highlighted node, use "Outline Edit" mode (click on the
icon in the tool bar or use the Toggle Outline
Edit command, in menu Edit / Modes / Edit).
In this mode, there is always a "current point", identified with an "X" over it. To further identify this point,
the lines coming into and out of the point have arrows on them indicating the direction of the outline.

In outline edit mode, the left button is used to select and move a point on the outline, and the right button

 Using The Electric VLSI Design System 127

adds a new point after the selected one.

Besides selecting points with the mouse, you can also step through the points of the outline with the "." key
(next outline point) and "," key (previous outline point). These keys are under the ">" and "keys, so you can
think of them as the "next point" (>) and "previous point" (<) commands.

The Erase command (in menu Edit) deletes the current outline point (so does the Delete key).

When done editing the outline, switch to standard selection mode (the Click/Zoom/Wire command, in menu
Edit / Modes / Edit).

6−10−3: Special Outline Generation

To generate a doughnut shaped outline, use the
"Annular Ring..." command under the "Misc"
entry in the component menu. This dialog
prompts for a layer to use and an inner and outer
radius for the annulus. By default, it is made as
a full circle (360 degrees), but this can also be
changed. Finally, the number of line segments
used in the construction can be set, allowing for
smoother or coarser shapes.

To generate text−shaped outlines, use the "Layout
Text..." command under the "Misc" entry in the
component menu. This dialog prompts for text and a
layer to use as well as the size, scale, font, and style. A
nonzero dot separation causes each pixel of the text to
be placed separately (some design rules need this).

128 Using The Electric VLSI Design System

Chapter 6: Advanced Editing

6−11: Interpretive
Languages

Electric has the Bean Shell built into it. This enables you to load Java scripts that access the Electric database.

The Bean Shell is not part of the default Electric distribution. You must add it as a "plug in" (see Section
1−5 for more on plug−ins).

To run a script, use the Run Java Bean Shell Script command (in menu Tool / Languages). Here is an
example script that searches the current cell for exports starting with "a".

 import com.sun.electric.database.hierarchy.Cell;
 import com.sun.electric.tool.user.ui.WindowFrame;
 import java.util.List;
 import java.util.ArrayList;
 import java.util.Iterator;
 // read library with test setup
 Cell lay = WindowFrame.getCurrentCell();
 // find all exports
 com.sun.electric.database.hierarchy.Export e;
 List aList = new ArrayList();
 for(Iterator it = lay.getPorts(); it.hasNext();)
 {
 e = (com.sun.electric.database.hierarchy.Export)it.next();
 if (e.getName().startsWith("a")) aList.add(e);
 }
 String aOut = "Exports that start with 'a':";
 for(Iterator it = aList.iterator(); it.hasNext();)
 {
 e = (com.sun.electric.database.hierarchy.Export)it.next();
 aOut += " " + e.getName();
 }
 System.out.println(aOut);

Notice that Electric's "Export" object must be a fully−qualified name, because the name "Export" is used for
other reasons in the Bean Shell.

For more information about accessing the interals of Electric, read the Javadoc in the source code.

 Using The Electric VLSI Design System 129

Chapter 6: Advanced Editing

6−12: Project
Management

The project management system in Electric allows multiple users to work together on the design of a circuit.
This is accomplished by having a repository in a shared location, and local libraries in each user's disk area.
Users work on cells by checking them out of the repository, making changes, and then checking them back
in. The project management system ensures that only one user can access a cell at a time. In addition, it also
applies its understanding of the circuit hierarchy to inform users of potential inconsistencies that may arise.

The project management system uses the full power of cells to accomplish its task. It handles design history
by creating a new version of a cell each time it is checked out of the repository. The user's library contains
only the most recent version of each cell, taken from the repository. When a user updates their library from
the repository, newer versions are brought in and substituted for older versions. Unless the user specifically
asks for an older version, it is removed from their library.

Because the project management system uses versions to manage design progress, users are discouraged from
managing versions explicitly. Thus, the command New Version of Current Cell (in menu Cell) is not
allowed. Also, it is not appropriate for a user to use two different versions of a cell explicitly, because they
are considered to be part of a single cell's history.

All commands to the project management system can be found under the Project Management command (in
menu File). Subcommands exist there for checking cells in and out, updating local libraries from the
repository, and more. Many project management functions are also available in context menus in the cell
explorer.

130 Using The Electric VLSI Design System

Setting Up Project Management

The first step
needed to use the
project
management
system is to choose
a location for the
repository. This
must be a shared
location that each
user can access
(read and write).
Use the "Project
Management"
preferences, in
menu File /
Preferences...,
"General" section,
"Project
Management" tab.
Each user must do
this and set the
same location so
that they can share
the repository.

After the repository has been set, libraries can be entered into it. Use the Add Current Library To
Repository command to place your library in the repository. Note that a library that has been entered into the
repository is also tagged with information about the repository location, as well as the state of the cells
(checked−in or checked−out). Therefore, you should save your library after entering it into the repository.

Other users can obtain a copy of your library directly from the repository by using the Get Library From
Repository... command.

Individual users can now begin to work on the library. Before checking cells out of a library, it is necessary to
create a "user" account in the project management system. The "Project Management" preferences shows a
list of users. Although each user must "login" to the project management system with their own password,
Electric remembers the logged−in user between sessions, so it is not necessary to do this more than once.
Adding new users can be done in the "Administration" section of the dialog. Note that to add or delete users,
the administrator must first click "Authorize..." and provide the appropriate password. This password is
provided elsewhere in the manual.

Checking Cells In and Out

When a cell is not checked out, you cannot make changes to it. Any change is immediately undone by the
project management system. This means that a change which affects unchecked−out cells, higher up the
hierarchy, will also be disallowed.

To check−out the current cell, use the Check Out This Cell command. If there are related cells
(hierarchically above or below this) that are already checked−out to other users, you will be given warnings

 Using The Electric VLSI Design System 131

about potential conflicts that may arise.

To check the current cell back in, use the Check In This Cell... command. You will be prompted for a
documentation message about the change. No further changes will be allowed to the cell. Note that when
checking−in a cell, other cells above and below this in the hierarchy will also be checked−in. This is because
changes affect other cells in the hierarchy, and so consistent pieces of the hierarchy must be updated at the
same time.

The cell explorer shows
the state of cells that are
under project management
control (see Section 4−8).
Locks are drawn over cells
to indicate their state
(checked−in, checked−out
to you, or checked−out to
others). You can also
access many of the project
management commands by
selecting cells in the
explorer and using context
menu commands.

To update your library so that it contains the most recent version of every cell, use the Update command.
This will retrieve the newest version of every cell in every library that is being managed. You will be given a
list of cells that were replaced.

Advanced Commands

If, after a cell has been checked−out, you change your mind and do not wish to make changes, use the Cancel
Check−Out command (or use the "Cancel Check−Out" context menu when clicking on a cell name in the
cell explorer). This will destroy any changes made to the cell since it was checked−out and revert the cell to
its state when it was checked−in.

If, in the course of design, a new cell is created, it must be added to the repository so that others can share it.
Use the Add This Cell command to include the cell in the repository. Similarly, if a cell is to be deleted, use
the Remove This Cell command to delete it from the repository.

To examine the history of changes to a cell, use the Show History of This Cell... command (or use the
"Show History of This Cell..." context menu when clicking on a cell name in the cell explorer). Besides
showing the history of changes, you can use this dialog to retrieve an earlier version of the cell.

132 Using The Electric VLSI Design System

Under the Hood

The project management system makes use of version information on all cells to control cell changes. When
a cell is checked−out, a new version is made in your local library, and the old version is deleted. All instances
of the old version are switched to the new version. The old version remains in the repository. When the cell is
checked−in, that new version also goes into the repository. When updates are done, newer versions are
obtained from the repository, and appropriate substitutions are performed.

It is assumed that anyone who has read all the way to the end of this manual page must be quite serious about
the project management system. Such a person is probably an administrator, and therefore deserves to know
what the administration password is for adding and deleting users. The password is just the letter "e". For
increased security, edit the code and change this to something more secure.

 Using The Electric VLSI Design System 133

Chapter 6: Advanced Editing

6−12: Emergencies

Electric uses separate Java threads for all activities. Because of this, if the system encounters an error, it
aborts the thread but the main program continues to run.

If a thread crashes and leaves a Job running, then you will not be able to issue other commands, because their
Jobs will be queued behind the stuck one (see Section 4−8 for more viewing Jobs). Even the Quit command
is a job, and so it cannot run. To solve this problem, use the Force Quit (and Save) command (in menu File).

If you suspect that the database is corrupt, use the subcommands of the Check Libraries command (in menu
File). The Check command examines the database but does not fix errors. The Repair command checks and
repairs the database (if it can).

The networks may also need to be renumbered. Do this with Redo Network Numbering command (in menu
Tool / Network).

134 Using The Electric VLSI Design System

Chapter 7: Technologies

7−1−1: Technologies

A technology is an environment in which design is done. Technologies can be layout specific, for example
MOSIS CMOS, or they can be abstract, for example Schematics and Artwork. There are multiple CMOS
variations to handle popular design rules such as MOSIS, submicron, etc.

Each technology consists of a set of primitive nodes and arcs. These, in turn, are constructed from one or
more layers. Each technology also includes information necessary to do design, such as design rules,
connectivity rules, simulation information, etc.

The primitive nodes in a technology come in three styles: pins, components, and pure−layer nodes. The pins
are used to join arcs, so there is one pin for every arc in the technology. The components are the basic nodes
used in design: contacts, transistors, etc. Finally, the pure−layer nodes are used for geometric manipulation
(see Section 6−10−1). There is one pure−layer node for every layer in the technology.

The component menu in the side bar (on the left side of the editing window) shows arcs on the left (the menu
entries with red border), pin nodes in the center column (these appear as boxes with a cross inside), and
components on the right (the more complex layer combinations). The pure−layer nodes are available under
the entry labeled "Pure".

Electric has a "sample" library built into it that illustrates many features. To access it, use the Load
Library command (in menu Help / Samples). The table below lists the cells in that library which illustrate
different technologies:

Technology Description Sample Cell

mocmos MOSIS CMOS rules tech−MOSISCMOS{lay}

bipolar
Simple bipolar
technology

tech−Bipolar{lay}

schematics
Digital schematics
layout

tech−SchematicsDigital{sch}

schematics
Analog schematics
layout

tech−SchematicsAnalog{sch}

artwork Graphical design tech−Artwork

pcb Printed Circuit Boardstech−PCB{sch}

nmos n−Channel MOS rulestech−nMOS{lay}

rcmos Round CMOS rules tech−RoundCMOS{lay}

efido
Digital Filter
technology

tech−DigitalFilter

gem
Temporal Logic
specification

tech−Gem

 Using The Electric VLSI Design System 135

7−1−2: Controlling Technologies

Electric has the concept of a current technology which is shown in the status bar. This technology affects
many things, including the selection of nodes and arcs in the component menu. There are a number of ways
to affect the current technology, both manual and automatic.

You can change the current technology by selecting it from the popup at the top of the side bar (either the
"Components" or "Layers" tab). Electric automatically switches the current technology to match the cell
being edited. If there are multiple cells being edited from different technologies, this switching can become
annoying. To disable automatic technology switching, use the "New Nodes" preferences (in menu File /
Preferences..., "General" section, "New Nodes" tab), and uncheck "Switch technology to match current cell".

To see a list of primitive nodes and arcs in the current technology, use the Describe this
Technology command (in menu Edit / Technology Specific). To see a detailled description of the current
technology, use the Document Current Technology command.

The "Technology" preferences (in menu File / Preferences..., "Technology" section, "Technology" tab) lets
you control many general and specific technology settings.

You can change the default technology with the popup in the upper−left of this dialog. This default
technology is the used when Electric first begins. It is also used when reading old libraries that are missing
some technology information.

Besides remembering a startup technology, Electric also remembers a default "layout" technology. This is a
technology with real geometry (an integrated circuit technology, not a schematics or artwork technology) The
default layout technology is used to give further information about schematics components . It is listed in the
"Schematics" section under "Use scale values from this technology".

136 Using The Electric VLSI Design System

Some technologies have settable options that further customize them. The "Technology" preferences dialog
lets you control these options. More information about this dialog is available from the individual technology
sections on MOSIS CMOS (Section 7−4−2), Schematics (Section 7−5−1 and Section 3−11−2), and Artwork
(Section 7−6−1).

 Using The Electric VLSI Design System 137

#chap07-04-02
#chap03-11-02

Chapter 7: Technologies

7−2−1: Scale

Electric represents all distances in dimensionless units. A transistor that is 2 x 3 in size is actually stored in
memory as 2 x 3. To convert these units to real distances, each technology has a scale, measured in
nanometers (billionths of a meter). The scale of a technology is shown in the status area after the technology's
name.

For example, if the scale for the MOSIS CMOS ("mocmos") technology is 200 nanometers, then a 2 x 3
transistor is actually 400 x 600 nanometers (or 0.4 x 0.6 microns).

To set the scale, use the "Scale" preferences (in menu File / Preferences..., "Technology" section, "Scale"
tab).

Scale only applies to integrated−circuit layout technologies. There is no scale for Schematics, Artwork, and
other nonlayout technologies.

138 Using The Electric VLSI Design System

7−2−2: Units

Although distances are described in
dimensionless units, they must be
expressed with real units when
converted to the real world. You can
choose which unit should be used
with the "Units" preferences (in
menu File / Preferences...,
"Technology" section, "Units" tab).

Much of this dialog is currently unavailable, because the system does not use this information.

 Using The Electric VLSI Design System 139

Chapter 7: Technologies

7−3−1: I/O Specifications

Electric is able to read and write circuits in a number of different formats. This is done with the Import and
the Export commands (in menu File). See Section 3−9−2 for more on Import; see Section 3−9−3 for more on
Export.

To properly control translation, use the many preferences dialogs for the different file types (in menu File /
Preferences..., "I/O" section).

Unfortunately, many of these formats are pure geometry with no information about the circuit connections.
When read, they appear as pure−layer nodes. This means that transistors, contacts, and other multi−layer
nodes are not constructed properly. Although the cell appears visually correct, and can be used to export the
same type of file, it cannot be analyzed at a circuit level. The node extractor can be used to convert these
pure−layer nodes to true Electric components (see Section 9−10−2).

The next few sections describe control of different I/O formats.

7−3−2: CIF Control

CIF (Caltech Intermediate Format) is used as an interchange between design systems and fabrication
facilities. For information on reading and writing CIF, see Section 3−9−2 and Section 3−9−3, respectively.
CIF options are controlled with the "CIF" preferences (in menu File / Preferences..., "I/O" section, "CIF"
tab).

This dialog controls
the conversion
between layers in
Electric and layers in
the CIF file. By
clicking on an Electric
layer, you can type a
new CIF layer name
into the dialog.

140 Using The Electric VLSI Design System

#chap03-09-02
#chap03-09-03
#chap09-10-02
#chap03-09-02
#chap03-09-03

By default, CIF output writes the entire hierarchy below the current cell. If you check the "Output Mimics
Display" item, cell instances that are unexpanded will be represented as an outline in the CIF file. This is
useful when the CIF output is intended for hardcopy display, and only the screen contents is desired.

Another option is whether or not to merge adjoining geometry. This is an issue because of the duplication and
overlap that occurs wherever arcs and nodes meet. The default action is to write each node and arc
individually. This makes the file larger because of redundant box information, however it is faster to generate
and uses simpler constructs. If you check the "Output Merges Boxes" item, all connecting regions on the
same layer are merged into one complex polygon. This requires more processing, produces a smaller file, and
generates more complex constructs.

Another option is whether or not to instantiate the circuit in the CIF. By default, the currently displayed cell
becomes the top level of the CIF file, and is instantiated at the end of the CIF. This causes the CIF file to
display the current cell. If the CIF file is to be used as a library, with no current cell, then uncheck the
"Output Instantiates Top Level" checkbox, and there will be no invocation of the current cell.

When reading CIF files, the CIF "wire" statements are assumed to have rounded geometry at the ends and
corners. If you check the "Input Squares Wires" item, CIF input assumes that wire ends are square and extend
by half of their width.

Be advised that the CIF format has a minimum resolution of 10 nanometers. Since nothing smaller can be
accurately represented in the file, the CIF output of smaller geometries will generate errors.

7−3−3: GDS Control

GDS II (also called "Stream" format) is
used as an interchange between design
systems and fabrication facilities. For
information on reading and writing
GDS, see Section 3−9−2 and Section
3−9−3, respectively. In GDS files, there
are no names for each layer, just a pair
of numbers (the layer number and
type). It is important that Electric know
how these values correspond with
layers so that it can properly read and
write GDS files. You can set the
correspondences by using the GDS
Map File... command (in menu File /
Import) to read a GDS map file. You
can also use the "GDS" preferences
dialog (in menu File / Preferences...,
"I/O" section, "GDS" tab) to edit the
GDS numbers and control other aspects
of GDS input and output.

In the "GDS" preferences dialog, the list on the left shows all of the Electric layers in the current technology.
By clicking on a layer name, its GDS numbers are shown in the top−right and can be edited. In addition to
GDS numbers to use for layout, there are also two other types of GDS numbers: pin (for exports) and text (for
export names).

 Using The Electric VLSI Design System 141

#chap03-09-02
#chap03-09-03
#chap03-09-03

These dialog elements apply to reading GDS:

"Input includes Text". Text annotations in the GDS file can often clutter the display, so they are
ignored during input. If you check this item, annotation text will be read and displayed.

•

"Input expands cells". This controls whether cell instances are expanded or not in the Electric circuit.
By default, cell instances are not expanded (they appear as a simple box). If you check this item, cells
are expanded so that their contents are displayed. Expansion of cells can always be changed after
reading GDS by using the subcommands of the Expand Cell Instances and Unexpand Cell
Instances commands of the Cells menu.

•

"Input instantiates Arrays". This controls whether or not arrays in the GDS file are instantiated. By
default, arrays are instantiated fully, but this can consume excessive amounts of memory if there are
large arrays. If you uncheck this item, only the upper−left and lower−right instance are actually
placed.

•

"Input ignores unknown layers". This controls whether unknown layers in the GDS file will be
ignored, or placed in the circuit. By default, unknown layers appear as DRC−Nodes (special nodes
used to indicate DRC errors, which appear as orange squares). By checking this item, the unknown
layers are simply ignored.

•

These dialog elements apply to writing GDS:

"Output merges Boxes". This controls the merging of adjoining geometry. This is an issue because of
the duplication and overlap that occurs wherever arcs and nodes meet. The default action is to write
each node and arc individually. This makes the file larger because of redundant box information,
however it is faster to generate and uses simpler constructs. If you check this item, all connecting
regions on the same layer are merged into one complex polygon. This requires more processing,
produces a smaller file, and generates more complex constructs.

•

"Output Writes export Pins". This controls whether pins are written to the GDS file for each export.
If checked, and there is a valid pin layer, then it is written.

•

142 Using The Electric VLSI Design System

"Output all upper case". This controls whether the GDS file uses all upper case. The default is to mix
upper and lower case, but some systems insist on upper−case GDS.

•

"Output converts brackets in exports". This controls whether the square brackets used in array
specifications should be converted (to underscores). Some GDS readers cannot handle the square
bracket characters.

•

"Output default text layer". This is the layer number to use when writing text. When exports are
being written, and there is a text layer number associated with the appropriate Electric layer, then that
layer number is used instead of this default number.

•

7−3−4: EDIF Control

EDIF (Electronic Design Interchange
Format) is used to exchange design
information between different CAD
systems. Although EDIF is currently at
version "4 0 0", Electric reads and
writes version "2 0 0". For more
information on reading and writing
EDIF, see Section 3−9−2 and Section
3−9−3, respectively. EDIF options are
controlled with the "EDIF" preferences
(in menu File / Preferences..., "I/O"
section, "EDIF" tab).

This dialog controls whether EDIF
output writes schematic or netlist views
(the default is netlist). It also lets you set
a scale factor for EDIF input.

 Using The Electric VLSI Design System 143

#chap03-09-02
#chap03-09-03
#chap03-09-03

7−3−5: DEF Control

DEF (Design Exchange Format) is a
recent interchange format for CAD
systems. It is often combined with
LEF (Library Exchange Format)
files. For more information on
reading and writing DEF or LEF, see
Section 3−9−2 and Section 3−9−3,
respectively. DEF options are
controlled with the "DEF"
preferences (in menu File /
Preferences..., "I/O" section, "DEF"
tab).

This dialog controls whether DEF
reads physical and/or logical
information.

7−3−6: CDL Control

CDL (Circuit Description
Language) is almost identical to
Spice format, and is used as a
netlist interchange method. CDL
options are controlled with the
"CDL" preferences (in menu File /
Preferences..., "I/O" section,
"CDL" tab).

This dialog control the library
name and path information that is
written, and it lets you control the
conversion of square−bracket
characters.

144 Using The Electric VLSI Design System

#chap03-09-02
#chap03-09-03

7−3−7: DXF Control

DXF (Drawing eXchange Format) is a solid modeling format used by AutoCAD systems. For more
information on reading and writing DXF, see Section 3−9−2 and Section 3−9−3, respectively. DXF options
are controlled with the "DXF" preferences (in menu File / Preferences..., "I/O" section, "DXF" tab).

This dialog controls the list of acceptable DXF layers. These layers can be typed into the edit field, separated
by commas. If a layer name in the DXF file is not found in the list of acceptable layers, it will be ignored. If
you check "Input reads all layers", then all layers are read into Electric, regardless of whether the layer names
are known.

By default, Electric flattens DXF input, removing levels of hierarchy and creating a single cell with the DXF
artwork. By unchecking the "Input flattens hierarchy", Electric will preserve the structure of the DXF file.

To control scaling, you can change the meaning of units in the DXF file. The default unit is "Millimeters",
which means that a value of 5 in the DXF file becomes 5 millimeters in Electric.

 Using The Electric VLSI Design System 145

http://www.autodesk.com
#chap03-09-02
#chap03-09-03

7−3−8: SUE Control

SUE (Schematic User Environment) is the database format of the SUE schematic editor, from Micro Magic.
For more information on reading SUE, see Section 3−9−2. SUE options are controlled with the "SUE"
preferences (in menu File / Preferences..., "I/O" section, "SUE" tab).

This dialog controls whether transistors will appears in a standard 3−terminal configuration or in a 4−port
configuration with a substrate connection.

146 Using The Electric VLSI Design System

http://www.micromagic.com
#chap03-09-02

Chapter 7: Technologies

7−4−1: The MOS
Technologies

There are both nMOS and CMOS technologies available in Electric, with many different design rules. Use
the popup at the top of the component menu to select a different MOS technology.

There is one nMOS technology: "nmos" (the specifications used in the Mead and Conway textbook).

There are a few CMOS technologies available. The most basic is "cmos", which uses an idealized set of
design−rules from a paper by Griswold. The most popular CMOS technology is "mocmos" (MOSIS design
rules) which has two layers of polysilicon and up to 6 layers of metal with standard, submicron, or deep rules
(this is described more fully in the next section). There is even "rcmos", which uses round geometry!

Each MOS technology has two transistors
(enhancement and depletion in nMOS
technologies, n and p in CMOS). These nodes
can have serpentine paths by highlighting
them and using "Outline Edit" mode (see
Section 6−10−1).

The contact cuts in the MOS
technologies automatically
increase the number of cut
layers when the contact grows in
size. For very large contacts,
however, the display of these
cuts can waste time. Therefore,
when very large contacts are
displayed at small scale, the
interior cuts may not be drawn
(as shown on the right). Be
assured, however, that the cuts
are actually there, and will
appear in all appropriate output.

Although individual MOS nodes and arcs have the proper amount of implant around them, a collection of
such objects may result in an irregular implant boundary. To clean this up, you can place pure−layer nodes of
implant that neatly cover the implant area. Also, you can do this automatically with the Coverage Implants
Generator command (in menu Tool / Generation).

 Using The Electric VLSI Design System 147

7−4−2: The MOSIS CMOS Technology

The MOSIS CMOS technology describes a scalable CMOS process that is fabricated by the MOSIS
project of the University of Southern California. To obtain this technology, use the popup menu at the top of
the component tab (in the side bar) and select "mocmos".

This technology defaults to 4 metal layers (shown here), but can also be changed so that it uses anywhere
from 2 to 6 layers of metal. It also has 1 polysilicon layer but can be changed to use 2. The technology can
also be set to use either standard rules (SCMOS), submicron rules, or deep rules. You can choose whether to
allow stacked vias and whether or not to use alternate contact rules. All of this is done with the "Technology"
preferences (in menu File / Preferences..., "Technology" section, "Technology" tab).

The MOSIS CMOS technology also has two scalable transistor nodes that can be parameterized to have
different widths. The scalable transistors have contacts built into them. When created and scaled, their
maximum width is shown. However, by adding a "width" attribute, they can shrink arbitrarily. Note that the
ports remain in the same location regardless of the width, thus allowing them to scale without affecting
constraints.

148 Using The Electric VLSI Design System

http://www.mosis.org
http://www.mosis.org

The scalable transistor on the left is 3 wide, and the other two are 10 wide. However, the scalable transistor
on the right has had the "width" attribute set to 8 and so it has shrunk. Note that this attribute can be derived
from cell parameters, causing different instances of the same cell to have different size transistors in it.

If you get Object
Properties... on a scalable
transistor, there are extra
controls that let you choose
to have fewer contacts (1 or
even none), and you can
tighten the contact spacing.

Users of Electric version 6.02
or earlier will have a
different MOSIS CMOS
technology called
"mocmossub". This
technology attempted to
match the submicron rule set,
but did not do so as
accurately as the current
"mocmos" technology. If you
have designs in that
technology, they will be
automatically converted to
the new "mocmos" when
read in.

 Using The Electric VLSI Design System 149

Chapter 7: Technologies

7−5−1: The Schematics
Technology

The Schematic technology allows you to design using digital and analog schematic components. To obtain
this technology, use the popup menu at the top of the component menu and select "schematics".

There are two arcs in the Schematic technology: the wire (blue) and the bus (green). These arcs can be drawn
at 45 degree angles. One typically names busses with array names (for example "insig[0:7]"), and then names
wires with scalar names (for example "insig[1]"). See Section 6−9−3 for more on bus naming.

To make a physical connection of a
wire to a bus, the bus pin can
connect to either, so it acts as a tap.
In addition, the Wire Con node
connects wires to busses, or connects
busses of different width, replicating
the narrower side to make it as wide
as the wider side. Use the Rip
Bus command (in menu Edit / Arc)
to automatically add taps to a bus.

Digital schematics are built with the
And, Or, Xor, Buffer, Multiplexor,
and Flip−Flop nodes that appear in
the component menu. By attaching
arcs to these components and
negating them (with the Toggle Port
Negation command, in menu Edit /
Technology Specific), these turn
into NAND, NOR, Inverter, and
many other specialized components.
Note that the size of the negating
bubble can be controlled by using
the "Technology" preferences (in
menu File / Preferences...,
"Technology" section, "Technology"
tab), and setting the "Negating
Bubble Size" value in the
"Schematics" area.

The And, Or, Xor, and Multiplexor nodes can accept any number of input connections on the left, so they
require some care in wiring (see Section 1−11−5). The left side has one large input port that allows an
arbitrary number of connections. Initially, wires may attach at only three input locations, spaced evenly along
the left side. However, when all three locations are connected, the node automatically expands, adding

150 Using The Electric VLSI Design System

#chap06-09-03
#chap01-11-05

additional space along the side for new arcs.

To properly wire inputs to an And, Or, Xor, or Multiplexor node, cursor placement is very important, for it
determines which of the locations to use on the left side. If an arc gets connected in the wrong location, try
connecting more arcs until one appears in the right place, and then delete the unwanted ones.

The Switch node can also take an arbitrary number of poles on its left side. Simply stretch it along the line of
the poles and their number will grow.

The analog nodes (Resistor, Inductor, Capacitor, and Diode) have values on them which can be selected and
edited. Double−clicking on them brings up a special dialog for editing their value.

There are four transistor entries in the menu. The two on the right are the n and p transistors. The two images
on the left are actually popup menus that let you select any style of transistor. The difference between the two
on the left is that the top one is for 3−port transistors, and the bottom one is for 4−port transistors.

The "Spice" entry presents a popup menu of Spice parts . More information about the use of these parts can
be found in the Section 9−4−3.

The "Cell" entry presents a popup menu of all cell instances.

The "Global" entry provides two nodes: a "Global Signal" node defines a signal name that spans levels of
hierarchy , and a "Global Partition" node allows globals to be treated locally. See Section 6−9−5 for more on
global networks.

The Resistor can be treated as a connecting or nonconnecting node. By default, it does not connect the
networks on its two ends, and this is the correct way to treat it when doing low−level simulation such as
Spice. However, for higher−level simulations (such as Verilog) the resistor should be ignored and treated as
if it connects its two networks. To make this happen, use the "Network" preferences (in menu File /
Preferences..., "Tools" section, "Network" tab), and check "Ignore Resistors". Note that if resistors are being
ignored, Spice deck generation will temporarily include them while the netlist is being created.

Some commands that analyze a schematic circuit need to know which layout technology will be used to
fabricate the design. For example, when generating a Spice deck from a schematic, it is necessary to know the
sizes and parasitics that are associated with the actual circuit. To set the layout technology to use for
schematic circuits, use the "Technology" preferences (in menu File / Preferences..., "Technology" section,
"Technology" tab), and set the "Use scale values from this technology" popup.

7−5−2: Multipage Schematics and Frames

Multipage schematics are implemented in Electric by having each page map to a different area of a vast
schemetic cell. To create one of these multipage cells, use the Make Cell Multi−Page command (in menu
Cell / Multi−Page Cells). You will then be editing page 1 of the multi−page schematic.

You can add pages to the current multipage schematic with the Create New Page command (in menu Cell /
Multi−Page Cells). You can delete the current page with Delete This Page. To advance to the next page, use
Edit Next Page.

Older versions of Electric implemented multipage schematics with different view types ("p1", "p2", ...). If
these views appear instead of proper pages, use the Convert old−style Multi−Page Schematics command.

 Using The Electric VLSI Design System 151

#chap09-04-03
#chap06-09-05

As a graphical aid to schematic design, frames can be displayed in a cell by using the Cell
Properties... command (in menu Cell). Multi−page schematics require a cell frame on every page, but their
presence is optional in other cells.

The frame
size can be
"Half−A",
"A", "B", "C",
"D", and "E".
The frame can
be horizontal
(landscape) or
vertical
(portrait).
You can
choose to
display a title
box in the
lower−right
corner. The
designer
name can also
be set for each
cell.

Besides the designer name, cell frames have a company name and a project name. These values are not set for
each cell, but instead are preferences that are set for each user. Individual libraries can override these defaults
as well.

The "Frame"
preferences (in menu
File / Preferences...,
"Display" section,
"Frame" tab) lets you
set all of these
defaults. Note that the
designer name is taken
first from the cell,
then from the library
if the cell does not set
a value, and finally
from the general
default if the library
and cell do not set a
value.

152 Using The Electric VLSI Design System

Chapter 7: Technologies

7−6−1: The Artwork
Technology

The Artwork technology is an unusual technology that provides general−purpose sketching facilities. To
obtain this technology, use the popup menu at the top of the component menu and select "artwork".

This technology has nodes for
many typical graphic objects such
as rectangles, triangles, circles, and
arrowheads. Polygonal and Spline
nodes allow arbitrary shapes to be
defined. Of course, nodes from all
other technologies can be used as
special electronic symbols when
artwork is generated. Conversely,
these artwork nodes can be used to
embellish designs done in all other
technologies.

Circles can be outlines (normal or
thick) or filled. The default shape is
round, but elongation of the node
produces an ellipse. In addition, by
using the Object
Properties... command (in menu
Edit / Properties), the outline
circles can be reduced to a portion
of the circle (from 1 to 360
degrees).

Arrow heads can be drawn in two different styles: simple or filled. The simple arrow head is the default and
consists of two lines. The filled arrow head looks better because it is made of polygons. Use the
"Technology" preferences (in menu File / Preferences..., "Technology" section, "Technology" tab), and set
the "Arrows filled" checkbox in the "Artwork" area.

The "Export" entry creates an export for use in icons. After clicking on the entry, you have the choice of
selecting "Wire", "Bus", or "Universal" exports (see Section 3−11−4 for more on icon generation).

There are four different polygon styles: opened, closed, filled, and spline. The opened polygon can be drawn
with solid lines, dotted lines, dashed lines, or thicker lines. These nodes require that you use the "Outline
Edit" mode (see Section 6−10−1).

The illustration below shows how outline information, applied to Artwork nodes, results in different shapes.
In each of the shapes, the outline has the same 5 points, as illustrated in the upper−left. The nodes interpret

 Using The Electric VLSI Design System 153

#chap03-11-04

this outline information to produce their shape. Note that the spline curve does not run through the outline
points, only near them.

The final feature of the Artwork
technology is its ability to set the
appearance of any of its nodes or
arcs. Use the Artwork
Appearance... command (in menu
Edit / Technology Specific) to set
the color and pattern of any Artwork
node or arc. Predefined patterns are
available below the pattern−editing
area. The transparent colors are
taken from the current color map,
which in turn is taken from the most
recently selected technology (other
than the Artwork technology).

154 Using The Electric VLSI Design System

7−6−2: The FPGA Technology

The FPGA technology is a "soft" technology that creates primitives according to an FPGA Architecture file.
Special commands in the Edit / Technology Specific / FPGA menu let you create the FPGA primitives,
build FPGA structures, and program them.

The FPGA Architecture file contains all of the information needed to define a specific FPGA chip. It has
three sections: the Primitive Definition section, the Block Definition section, and the Arcitecture section. The
Primitive Definition section describes the basic blocks for a family of FPGA chips (these are primitives in the
FPGA technology). The Block Definition section builds upon the primitives to create higher−level blocks.
Finally, the Architecture section defines the top−level block that is the FPGA.

An FPGA Architecture file must have the Primitive Definition section, but it need not have the Block
Definition or Architecture Sections. This is because the placement of the primitives can be saved in an
Electric library, rather than the architecture file. Thus, after reading the Primitive Definition section (which
creates the primitives), and reading the Block Definition and Architecture Sections (which places the
primitives to create a chip library) the library can be saved to disk. Subsequent design activity can proceed by
reading only the Primitive Definition section and then reading the library with the chip definition. This avoids
large FPGA Architecture files (the Primitive Definition section will be smaller than the Block Definition and
Architecture sections).

Primitive Definition Section

The Primitive Definition section defines the lowest−level blocks, which become primitive nodes in the FPGA
technology. A primitive definition looks like this:

(primdef
 (attributes
 (name PRIMNAME)
 (size X Y)
)
 (ports
 (port
 (name PORTNAME)
 (position X Y)
 (direction input | output | bidir)
)
)
 (components
 (pip
 (name PIPNAME)
 (position X Y)
 (connectivity NET1 NET2)
)
)
 (nets
 (net
 (name INTNAME)
 (segment FROMPART TOPART)
)
)
)

The attributes section defines general information about the block. The ports section defines external
connections. The components section defines logic in the block (currently only PIPs). The nets section
defines internal networks. There can be multiple segment entries in a net, each defining a straight wire that

 Using The Electric VLSI Design System 155

runs from the FROMPART to the TOPART. These parts can be either port PORTNAME or coord X Y,
depending on whether the net ends at a port or at an arbitrary position inside of the primitive.

For example, this block has two vertical
nets and two horizontal nets. Four pips are
placed at the intersections. Six ports are
defined (two on the left, two on the top,
and two on the bottom). The code is as
follows:

(primdef
 (attributes
 (name sampleblock)
 (size 40 60)
)
 (ports
 (port (name inleft1) (position 0 40)
(direction input))
 (port (name inleft2) (position 0 20)
(direction input))
 (port (name outtop1) (position 10
60) (direction output))
 (port (name outtop2) (position 30
60) (direction output))
 (port (name outbot1) (position 10 0)
(direction output))
 (port (name outbot2) (position 30 0)
(direction output))
)

 (components
 (pip (name pip1) (position 10 20)
(connectivity intv1 inth1))
 (pip (name pip2) (position 30 20)
(connectivity intv2 inth1))
 (pip (name pip3) (position 10 40)
(connectivity intv1 inth2))
 (pip (name pip4) (position 30 40)
(connectivity intv2 inth2))
)

 (nets
 (net (name intv1) (segment port
outbot1 port outtop1))
 (net (name intv2) (segment port
outbot2 port outtop2))
 (net (name inth1) (segment port
inleft2 coord 30 20))
 (net (name inth2) (segment port
inleft1 coord 30 40))
)
)

156 Using The Electric VLSI Design System

Block Definition and Architecture Sections

The Block Definition and Architecture sections define higher−level blocks composed of primitives. They
looks like this:

(blockdef
 (attributes
 (name CHIPNAME)
 (size X Y)
 (wirecolor COLOR)
 (repeatercolor COLOR)
)
 (ports
 (port
 (name PORTNAME)
 (position X Y)
 (direction input | output | bidir)
)
)
 (components
 (instance
 (attributes ATTPAIRS)
 (type BLOCKTYPE)
 (name BLOCKNAME)
 (position X Y)
 (rotation ROT)
)
 (repeater
 (name BLOCKNAME)
 (porta X Y)
 (portb X Y)
 (direction vertical | horizontal)
)
)
 (nets
 (net
 (name INTNAME)
 (segment FROMPART TOPART)
)
)
)

The only difference between the Architecture section and the Block Definition section is that the Architecture
section has the keyword architecture instead of blockdef. There can be only one architecture section, but
there can be many blockdefs, defining a complete hierarchy.

The attributes section defines general information about the block.

The ports section defines external connections.

The components section defines logic in the block (currently instances of other blocks or repeaters). The
rotation of an instance is the number of degrees counterclockwise, rotated about the center. The
attributes section of the instance assigns name/value pairs (this can be used to program the FPGA).

The nets section defines internal networks. There can be multiple segment entries in a net, each defining a
straight wire that runs from the FROMPART to the TOPART. These parts can be either component
INSTNAME PORTNAME, port PORTNAME, or coord X Y, depending on whether the net ends at a
component, port or at an arbitrary position inside of the block.

 Using The Electric VLSI Design System 157

Here is an example of block definition
code and its layout.

(blockdef
 (attributes
 (name testblock)
 (size 80 150)
)
 (components
 (instance (type sampleblock) (name
block0)
 (position 30 80))
 (instance (type sampleblock) (name
block1)
 (position 30 10))
 (repeater (name r0) (porta 10 120)
 (portb 20 120) (direction
horizontal)
)
 (repeater (name r1) (porta 10 100)
 (portb 20 100) (direction
horizontal)
)
 (repeater (name r2) (porta 10 50)
 (portb 20 50) (direction
horizontal)
)
 (repeater (name r3) (porta 10 30)
 (portb 20 30) (direction
horizontal)
)
)

 (ports
 (port (name top0) (position 40 150) (direction bidir))
 (port (name top1) (position 60 150) (direction bidir))
 (port (name left0) (position 0 120) (direction input))
 (port (name left1) (position 0 100) (direction input))
 (port (name left2) (position 0 50) (direction input))
 (port (name left3) (position 0 30) (direction input))
 (port (name bot0) (position 40 0) (direction bidir))
 (port (name bot1) (position 60 0) (direction bidir))
)

 (nets
 (net (name iv0)
 (segment port top0 component block0 outtop1))
 (net (name iv1)
 (segment port top1 component block0 outtop2))
 (net (name iv2)
 (segment component block0 outbot1 component block1 outtop1))
 (net (name iv3)

158 Using The Electric VLSI Design System

 (segment component block0 outbot2 component block1 outtop2))
 (net (name iv4)
 (segment component block1 outbot1 port bot0))
 (net (name iv5)
 (segment component block1 outbot2 port bot1))
 (net (name ih0)
 (segment port left0 component r0 a))
 (net (name ih1)
 (segment component r0 b component block0 inleft1))
 (net (name ih2)
 (segment port left1 component r1 a))
 (net (name ih3)
 (segment component r1 b component block0 inleft2))
 (net (name ih4)
 (segment port left2 component r2 a))
 (net (name ih5)
 (segment component r2 b component block1 inleft1))
 (net (name ih6)
 (segment port left3 component r3 a))
 (net (name ih7)
 (segment component r3 b component block1 inleft2))
)
)

Commands

To read an architecture file, use the Read Architecture And Primitives... command (in menu Edit /
Technology Specific / FPGA). You will be prompted for an architecture file. To read only the primitives
from an architecture file, use the Read Primitives... command.

Once an FPGA is on the screen, two aspects of its display can be controlled: the wires and the text. Three
commands control the display of wires: Show All Wires displays every wire, Show No Wires hides every
wire, and Show Active Wires shows only the wires that have been connected to PIPs that have been
programmed. Two commands control the display of text: Show Text displays text and Hide Text turns text
display off.

Once an FPGA has been created, you can program the PIPs by selecting a component and using the Edit
Pips... command. This will display a list of active PIPs on the component. For example, after clicking on one
of the "SampleBlock" instances, you can type the string "pip1 pip4" to program two of the pips in that
instance.

7−6−3: The Generic Technology

One particularly interesting technology is the Generic technology, which is a grab bag of miscellaneous
facilities. It is not necessary to actually switch into this technology, for all of its nodes and arcs are available
through other means.

Special Arcs

The Universal arc in the Generic technology is able to make a connection between any two components,
even if they are in different technologies. This is useful when mixing technologies while still maintaining

 Using The Electric VLSI Design System 159

proper connectivity, for example when simulating. The Invisible arc attaches any two components, but makes
no electrical connection. It is useful for constraining otherwise unrelated components. The Unrouted
arc makes arbitrary electrical connections, like the universal arc, but routers know to replace them with real
geometry. None of these arcs produce any actual geometry in IC descriptions, but they make important
conceptual connections.

Any existing arc in a normal technology can be converted to one of these three special arcs by using the
Change... command (in menu Edit).

Special Nodes

There are also special nodes in the Generic technology. They are all available from the "Misc." entry of the
component menu.

The Universal−Pin is a node that can connect to any arc. This is useful as an intermediate component when
replacing (first you replace the unwanted node with a Universal−Pin to allow it to fit with the existing arcs;
then you replace the arcs; finally you put the desired new node in place).

The Invisible−Pin is used for holding text, and it
does not appear in hardcopy output (this is what
is created when you use place Annotation Text).
This pin can also connect to any arc.

A special primitive, called Cell−Center, defines
the origin of any cell. Once the node is placed,
its location is at (0,0) for the cell. Since
instances of the current cell use the origin as the
anchor point for cursor−based references, the
location of this node defines the anchor. For
example, if you place this node in the
upper−right corner of a cell, then creation
commands place instances such that their
upper−right corner is at the cursor. See Section
3−3 for more information on cell centers.

A special primitive, called Essential−Bounds, defines an alternate boundary of any cell. At least two of them
must be placed in opposite corners, although 4 can be place to make it look better.

Note that the Cell−Center and Essential−Bounds nodes are made "hard−to−select" by default, which means
that they can be selected only by using "Special Select" mode (see Section 2−1−5 for more).

A special primitive, called Simulation−Probe is recognized by simulators and visually modified to reflect
whatever it is connected to. The simulators that reflect the state of the circuit by drawing lines along arcs also
fill−in these probe nodes. It provides a visual display of simulation activity, and works especially well with
the VCR controls in the waveform window. See Section 4−12−1 for more.

160 Using The Electric VLSI Design System

#chap02-01-05

Chapter 8: Creating New Technologies

8−1: Designing New
Technologies

Although there are many technology descriptions in Electric, there are many more in the world. To
accommodate this, there is the technology editor which allows you to modify existing technologies and create
new ones.

The editor works by converting a technology into a library of cells. You then edit the cells, using familiar
Electric commands, and make changes to the technology. Finally, the technology editor translates the library
back into a technology.

Libraries which describe a technology are
called technology libraries. They use
elements from the Artwork technology to
describe their information. Special
commands from the Edit / Technology
Specific menu aid in the manipulation of
these libraries.

There are four types of cells in a
technology library which describe the
layers, arcs, nodes, and support. They are
separated into these groups in the cell
explorer. The layer cells all begin with the
name "layer−" and each one defines a layer
in the technology. For example, the cell
called "layer−Metal" defines the metal
layer. The node and arc cells correspond to
the primitives in the technology. Their
names always begin with "node−" and
"arc−". The support cell is always called
"factors". Any other cell in the library is
ignored.

 Using The Electric VLSI Design System 161

Chapter 8: Creating New Technologies

8−2: Converting between
Technologies and

Libraries

Converting Technologies to Libraries

The best way to create a new technology is to change an existing one. Use the Convert Technology to
Library for Editing... command (in menu Edit / Technology Specific) and select a similar technology.
Unfortunately, the Schematic and Artwork technologies are too complex to edit and cannot be converted.

Conversion of a technology to a library creates a library with the same name as the technology. Note that
technologies with options (such as MOSIS CMOS) will be converted with their current settings only, and the
options will no longer be available.

Technology−Editing Mode

Once a technology−library has been created, editing of its cells is done in a special technology−editing mode.
The system knows to use technology−editing mode because the cells are marked as being "Part of a
technology editor library" (see the Cell Properties... command of the Cells menu).

Converting Libraries to Technologies

To convert a technology−library into a technology, use the Convert Library to Technology... command.

You are given the opportunity of naming
the technology, and can also request that
Java code be produced (this code can be
compiled with Electric to install the
technology permanently). If a technology
already exists with the name you want, you
can request that it be renamed, or you can
choose a different name for the new
technology (note that technologies can also
be renamed with the Rename Current
Technology... command).

If there is an error in the library, conversion is aborted and you are given a chance to fix the library.
Generally, the offending part of the library is highlighted. If no errors have occurred in the translation, there
will be a new technology in Electric and it will be the current one.

Before creating any circuitry with the new technology, it is advisable to create a new library (use the New
Library... command of menu File) so that the test circuitry is not stored with the library that describes it.

162 Using The Electric VLSI Design System

Cleaning Up

After a few rounds of technology editing, there may be many libraries and technologies. You can delete the
current library with the Close Library command of the File menu (to make another library current, use the
Change Current Library... command of the File menu).

Using Technology Libraries

Once a library has been successfully built that describes a technology, it can be saved to disk with the Save
Library command of the File menu. Then, in another session of Electric, it can be read from disk and
converted to a technology.

 Using The Electric VLSI Design System 163

Chapter 8: Creating New Technologies

8−3: Hierarchies of
Technology Libraries

Although a technology is normally described with a single library, it is also possible to string together a
sequence of libraries to describe a technology. The sequence forms an "inheritance hierarchy", where later
libraries in the sequence can override elements found in earlier libraries. For example, one library could be a
"base" description for a family of technologies, and another library could be a "tailoring" description that
describes a specific family member. The tailoring library might be very small, consisting of a single node
description. That information would then override or augment the base library.

To connect a sequence of libraries, a list is placed in the bottommost library pointing to the earlier, or
"dependent" libraries. In the example below, the current library is "smallPads" and it is tailored with two
other libraries: "pads" and "cmos" (the "base" library). Note that the list implicitly begins with the current
library, and continues in reverse order. In this example, the first library examined is "padsSmall", followed by
"pads" and finally the base library "cmos".

When a piece of technology information is found in more than one library, the latest one is used (i.e. the
current library's version is used before a dependent library's version, and a dependent library's version is used
before that of another dependent library higher up the list). Note that the version which is used is expected to
be the most recently created version, and a warning message will be issued if this is not the case.

Control of the library list is done with the Edit Library Dependencies... command (in menu Edit /
Technology Specific).

A dialog is presented
with two lists of
libraries. The list on
the left shows the
dependent libraries
and the list on the
right shows all current
libraries. By selecting
a library name from
the list on the right
and clicking on the
"<< Add" button, it is
added to the list on the
left. To add a library
not shown, type its
name into the box on
the right and click the
"<< Add" button.

To remove a library from the list on the left, select it and click the "Remove" button.

164 Using The Electric VLSI Design System

Chapter 8: Creating New Technologies

8−4: The Layers Cells

Layers are used to construct primitive nodes and arcs in a technology. Because of this, the layers must be
edited before the nodes and arcs. To edit an existing layer, select it from the cell explorer or the Edit
Cell... command (in menu Edit).

To create a new layer, use the context menu on the
"TECHNOLOGY LAYERS" entry of the cell
explorer and choose "Add New Layer". A layer can
be deleted simply by deleting its cell. A layer can be
renamed by renaming its cell, but remember to use
the name "layer−" in front (i.e. the old name is
"layer−metal" and the new name is
"layer−metal−1"). Finally, you can rearrange the
order in which the layers will be listed with the
"Reorder Layers" command from the context menu.

There are many pieces of
information in a layer,
most of which can be
updated by
double−clicking on them.
There is a 16x16 stipple
pattern, a large square of
color above that, and a
number of pieces of textual
information along the right
side.

The stipple pattern can be changed by double−clicking on any grid squares. You can also do operations on
the entire stipple pattern ("Clear Pattern", "Invert Pattern", "Copy Pattern", and "Paste Pattern") by
double−clicking on their name below the pattern area.

 Using The Electric VLSI Design System 165

The color of the layer can be changed by
double−clicking on the "Color" entry. The
dialog lets you choose a color, opacity,
and foreground factor for the layer.
Opacity ranges from 1.0 (fully opaque) to
0 (transparent). The foreground flag is
"on" to indicate that the non−opaque
colors can be combined with others.

Transparency lets a layer have a unique appearance where it overlaps other layers. The overlap is defined in
the technology's color map. You can double−click on the "Transparency" entry to assign this factor to a layer.
Non−transparent layers (with "Transparency: none") are opaque, so they obscure anything under them when
drawn. In general, the most commonly used layers should be transparent. See Section 4−6−1 for more
information on transparency.

The "Style" entry on the right can be "solid", "patterned", or "patterned/outline" to indicate how that layer
will be appear. When using "solid" styles, the 16x16 stipple pattern is ignored (except for hardcopy). The
"patterned/outline" option draws a solid line around all patterned polygons. Transparent layers should be
solid because they distinguish themselves in the color map. Layers with opaque colors should probably be
patterned so that their combination is visible.

Many of the entries on the right side of the layer cell provide correspondences between a layer and various
interchange standards. The "CIF Layer" entry is the string to use for CIF I/O. The "GDS−II layer" entry can
be as simple as a single layer number, but it can also be two numbers separated by a "/" (the layer number and
its type). You can also add a comma and then another layer/type pair with the letter "t" (for text) or "p" (for
pin) at the end.

Another set of options on the right side of the layer cell is for Spice parasitics. You may assign a resistance,
capacitance, and edge capacitance to the layer for use in creating Spice simulation decks.

The "3D Height" and "3D Thickness" are used when viewing a chip in 3−dimensions. The height and
thickness are arbitrary values which describe the location and thickness in the third axis (out of the screen).
For example, to show how poly and diffusion interact, the poly layer can be at height 21 and the diffusion
layer at height 20, both with 0 thickness. This will appear as two ribbons, one over the other. See Section
4−11 for more information on 3D display.

The last option on the right side of the layer cell specifies the minimum coverage percentage (see Section
9−2−3 for more).

Layer Function

The "Function" entry allows a
general−purpose description to be
attached to the layer. A function
consists of a single base description plus
optional additional modifiers. The
additional modifiers are found in the
last entries of the function list.

These additional modifiers can be added to the base function:

166 Using The Electric VLSI Design System

#chap04-11
#chap04-11
#chap09-02-03
#chap09-02-03

The modifiers "p−type," "n−type," "depletion," "enhancement," "light," "heavy", and "thick" describe
layer types that are process−specific.

•

The modifier "pseudo" indicates that this layer is a pseudo−layer, used for pin construction. •
The modifier "nonelectrical" indicates that this layer is decorative and not part of a real circuit. •
The modifiers "connects−metal," "connects−poly," and "connects−diff" indicate that this contact
layer joins the specified real layers.

•

The modifier "inside−transistor" indicates that the polysilicon is not field−poly, but is part of a
transistor.

•

For example, you can double−click the function entry many times, selecting "Diffusion", "p−type", and
"heavy" to indicate a Diffusion layer that is heavily−doped p−type. To clear the layer function, set it to
"unknown."

A number of rules apply to the selection of layer functions. There must be a "pseudo" layer for every layer
used to build arcs. This is because every arc needs a pin, and pins are constructed from "pseudo" layers. The
"pseudo" layers are virtual geometry that do not appear in the fabrication output. It is important that every
"pseudo" layer have an associated real layer, with similar descriptive fields. The technology editor will issue
a warning if pins are not constructed from pseudo−layers.

Note that the layer functions must be treated carefully as they form the basis of subsequent arc and node
definitions. One consideration to note is the use of "Wells" and their significance to the Spice extractor. If the
technology requires a separate contact to the well, then it will typically contain a metal layer, and a piece of
heavily doped material under the metal to make ohmic contact to the well; i.e. p++ in a P−well. This will
have the same doping as the well, unlike a device diffusion, which is of opposite type to the well in which it
is located.

Two rules apply here:

There must be a separate diffusion layer for the p++ or n++ used as a contact in a P−well or N−well,
respectively; it cannot be the same layer that is used for diffusions in active devices.

1.

A p++ or n++ layer that is used to make a contact in a well of the same semiconductor type (for
example p++ in a P−well) must not be defined with the layer function Diffusion; it must be declared
as "Well". In the well contact shown below, both the p++ layer and the P−well layer will be defined
with the layer function "Well, P−type".

2.

 Using The Electric VLSI Design System 167

Chapter 8: Creating New Technologies

8−5: The Arc Cells

Creating and Deleting Arc Cells

Arcs are the wires in a technology, and they are constructed from pieces of geometry on the layers. To edit an
existing arc, select it from the cell explorer or the Edit Cell... command (in menu Edit).

To create a new arc, use the context menu on the
"TECHNOLOGY ARCS" entry of the cell explorer
and choose "Add New Arc".

An arc can be deleted simply by deleting its cell. An arc can be renamed by renaming its cell, but remember
to use the name "arc−" in front (i.e. the old name is "arc−metal" and the new name is "arc−metal−1"). Finally,
you can rearrange the order in which the arcs will be listed with the "Reorder Arcs" command from the
context menu.

Editing Special Arc Information

Arc cells show a sample arc on the bottom and a few pieces of textual information above it. The textual
information can be updated by double−clicking on it.

The "Fixed−angle" entry lets you choose
whether or not default arcs of this type are
drawn at fixed angles (the particular fixed angle
is specified by the "Angle increment" field
below). In many layout technologies, the correct
state is "yes".

The "Wipes pins" entry lets you choose whether
or not these arcs completely erase connecting
pins (the sensible state is "yes" because pins are
drawn in the same layer and would not be
visible anyway).

The "Extend arcs" entry lets you choose whether or not these arcs extend beyond their endpoints by half of
their width (the typical state is "yes").

The "Angle increment" entry is the preferred angle granularity of this type of arc (the typical state is "90"
which requests Manhattan arcs).

168 Using The Electric VLSI Design System

The "Antenna Ratio" entry is used in antenna rules calculations (see Section 9−3−2).

The "Function" entry describes the
arc's function, which is a different set
than the layer functions. As with layer
functions, the arc functions should be
carefully considered.

A well arc that contains a well layer and does not contain device diffusion (i.e. opposite doping to the well)
must not be defined as "diffusion"; it must be defined as "well−diffusion". This prevents the Spice extractor
from incorrectly adding any p or n doped area found in the well arc to the source or drain area of a transistor
on the same network. This does not mean that a device arc cannot contain a well layer. Device arcs will be
declared as "p−diffusion" or "n−diffusion", and their well layer will be handled correctly; the arc connectivity
is really defined by the device diffusion layer. For example, a p−device arc will have an N−well, or N
substrate under it, and a p−type diffusion will end up as part of the drain or source of the P transistor to which
it is connected.

Editing Arc Geometry

In addition to the above information, the arc must also be described with pieces of geometry on the various
layers. Thus, a prototypical arc must be drawn in this cell. The length of the arc is not important, but the
smaller dimension is presumed to be the width and defines the default for this arc type.

Use the entries from the component menu of the side bar to create new layers. The typical layer in an IC
technology is a Filled box (third from the top).

After the geometry is created, it can be moved
and resized with standard Electric commands.
Remember to keep all arc geometry separate
from the information messages in the cell so
that the technology editor can distinguish
them. Once a piece of geometry is created, its
layer can be set by double−clicking on it. A
menu is then presented with possible layers
(ignore the last entries,
"SET−MINIMUM−SIZE", and
"CLEAR−MINIMUM−SIZE" which are used
only for nodes).

Besides geometric layers, the graphical arc
description must have a highlight layer to
show where the arc will be outlined when
used in a circuit. Although the highlighting is
typically drawn around the outside of all
geometry, implant layers may extend beyond
the highlight (see the CMOS diffusion arcs
for an example of this). Select the "HIGH"
entry in the component menu to create this
special type of layer.

 Using The Electric VLSI Design System 169

#chap09-03-02

After geometry has been created, there may be some confusion as to what is there. To find out, use the
Identify Primitive Layers command (in menu Edit / Technology Specific), which temporarily labels each
piece of geometry in the arc cell.

170 Using The Electric VLSI Design System

Chapter 8: Creating New Technologies

8−6: The Node Cells

Creating and Deleting Node Cells

Nodes are the components in a technology, and they are constructed from pieces of geometry on the layers.
To edit an existing node, select it from the cell explorer or the Edit Cell... command (in menu Edit).

To create a new node, use the context menu on the
"TECHNOLOGY NODES" entry of the cell
explorer and choose "Add New Node". A node can
be deleted simply by deleting its cell. A node can be
renamed by renaming its cell, but remember to use
the name "node−" in front (i.e. the old name is
"node−metal" and the new name is
"node−metal−1"). Finally, you can rearrange the
order in which the nodes will be listed with the
"Reorder Nodes" command from the context menu.

Editing Special Node Information

The node cell contains four pictures of the
node on the bottom and textual information
above that. You can update the textual
information entries by double−clicking on
them.

The "Serpentine transistor" entry indicates
that this is a MOS transistor and it can take
arbitrary outline information to describe its
geometry.

The "Square" entry forces the node to
always have the same X and Y dimension
when scaled.

The "Invisible with 1 or 2 arcs" entry
indicates that the node will not be drawn if
it is connected to exactly one or two arcs.
This is useful in schematic pins, which are
visible only when unconnected or forming a
junction of 3 or more wires.

The "Lockable" entry indicates that this node can be made unchangeable along with other lockable

 Using The Electric VLSI Design System 171

primitives, when the lock is turned on during editing (see Section 6−2 for more on locking these primitives).
This is typically used in array technologies such as FPGA (see Section 7−6−2).

The "Function" entry describes
the node's function, which is a
different set than the arc and layer
functions. A dialog offers a list of
possible node functions.

Editing Node Geometry

For nodes, it is common to sketch four different examples of the node in varying scales, so that X and Y
scaling rules can be derived (square nodes need only two examples). If only one example is specified, default
scaling rules will be presumed.

The smallest example, called the main example, is used as the default size and also contains all of the special
port information. Needless to say, it is important to keep the geometry of each example well apart from the
others so that the technology editor can distinguish them.

Each example must contain the same geometric layers (only stretched). As in the Arc cells, pieces of
geometry can be created by selecting from the component menu of the side bar, creating the geometry, and
then double−clicking to assign a layer. If any polygonal geometry is used (for example, the Filled polygon
entry, sixth from the top), they require outline information to be assigned (see Section 6−10−1). If the
Opened circle arc entry is selected (second from the bottom), you can specify the number of degrees of the
circle with the Object Properties... command (in menu Edit / Properties).

Each example must also contain a highlight layer to indicate the correct highlighting on the display. Select
the "HIGH" entry from the component menu to create this special type of layer.

Each example must also contain port information.
Select the "PORT" entry in the component menu
to create this special type of layer. You will have
to provide a name for each port, and the name
must be the same on each example.

Ports on the main example must also have
connectivity information (which arcs can connect
to them) and range information (the permissible
angle of connected arcs). Double−click on the
port to set this.

The range consists of two numbers: an angle (in
degrees counterclockwise from 3 O'clock) and an
angle range. For example, a port angle of 90 with
a port angle range of 45 describes a port that
points upward and can connect at angles up to 45
degrees off from this direction. The range will be
graphically depicted.

172 Using The Electric VLSI Design System

#chap07-06-02

The ports on the main example must also indicate any internal electrical connectivity by actually connecting
them together. For example, the two polysilicon ports on a MOS transistor should be connected in the main
example. Join the ports with a universal arc. Do not put this internal connection on any example other than
the main one. To see the location of all ports on the main example, use the Identify Ports command (in menu
Edit / Technology Specific).

As with arcs, use the Identify Primitive Layers command to label each piece of geometry in the main
example.

Special Node Considerations

There are some special cases available in node descriptions. A piece of geometry in the main example may be
changed (by double−clicking on its function) to "SET−MINIMUM−SIZE". This indicates that the current
size is the smallest possible, and it cannot scale any smaller (this is used by the "mocmos" technology for the
metal layer in contacts). The restriction can be removed with the "CLEAR−MINIMUM−SIZE" description.
This option cannot be used in serpentine transistors.

Another special case in node description is the ability to specify multiple cut layers. If the larger examples
have more cut layers, rules are derived for cut spacing and indentation so that an arbitrary numbers of cuts
can be inserted as the contact scales.

Although serpentine MOS transistors are a special case, they cannot be automatically identified, but must be
explicitly indicated with a textual indicator. Besides this explicit indication, the transistor node must contain
four ports: two on the gate layer (polysilicon) and two on the gated layer (active). A standard geometry must
be used that shows polysilicon and diffusion crossing in a central transistor area. Any deviation from this
format may cause the technology editor to be unable to derive serpentine rules for the node.

Besides the standard nodes for transistors, contacts, and other circuit elements, it is necessary to build pin and
pure−layer nodes. There should be one pin for every arc, so that the arc can connect to others of its type. The
pin should be constructed of pseudo−layers (i.e. it has no real geometry), should have the "pin" function, and
should have one port in the center that connects to one arc. The technology editor will issue a warning if there
is no pin node associated with an arc.

The pure−layer nodes should also be built, one for each layer. They should have only one piece of geometry
and have the "pure−layer" function. The technology editor will issue a warning if there is no pure−layer node
associated with a layer.

 Using The Electric VLSI Design System 173

Chapter 8: Creating New Technologies

8−7: Miscellaneous
Information

The Support Cell

Each cell in a technology library describes a different aspect of the technology. The support cell contains
technology−wide information. To see this, edit the cell "factors" under the "TECHNOLOGY SUPPORT"
section of the cell explorer.

The support cell contains many items, any of which can be changed by double−clicking on it.

"Scale" is the scaling factor between grid units and nanometers.•
"Description" is the full description of the technology.•
"Minimum Resistance" is the minimum resistance for the technology (see Section 9−10−1 for this
and other parasitics).

•

"Minimum Capacitance" is the minimum capacitance for the technology.•
"Gate Shrinkage" is the gate shrinkage for the technology.•
"Gates Included in Resistance" tells whether to include a transistor's gate in resistance computations.•
"Parasitics Includes Ground" tells whether to include ground networks in parasitics computations.•

174 Using The Electric VLSI Design System

Transparent Colors

Double−clicking on the
"Transparent Colors" entry shows
a dialog for selecting the
transparent colors. You must
define as many colors as you have
used in the layers.

Design Rules

Unfortunately, it is not possible to edit design rules associated with the technology.

 Using The Electric VLSI Design System 175

Chapter 8: Creating New Technologies

8−8: How Technology
Changes Affect Existing

Libraries

Once a technology is created, the components are available for design. Soon there will be many libraries of
circuitry that makes use of this new technology. What happens to these libraries when the technology
description changes? In most cases, the change correctly affects the existing libraries. However, some
changes are more difficult and might invalidate the existing libraries. This section discusses the possible
changes and shows workarounds for the difficult situations.

Technology information appears in four different places: the layers, the arcs, the nodes, and miscellaneous
information on the technology (the support cell and color tables). Information in these areas can be added,
deleted, or modified. The rest of this section outlines all of these situations.

Adding layers, adding arcs, adding nodes, adding miscellaneous information

Adding information has no effect on the existing circuitry. All subsequent circuit design may make use of the
new technology elements.

Deleting layers

All references to a deleted layer, in any nodes or arcs of the technology, will become meaningless. This does
not invalidate libraries that use the layers, but it does invalidate the node and arc descriptions in the
technology. The geometry in these nodes and arcs will have to be moved to another layer.

Deleting nodes, deleting arcs

This will cause error messages when libraries are read that make use of the deleted elements. When the
library is read, you can substitute another node or arc to use in place of the now−unknown component.

Deleting miscellaneous information

This depends entirely on where that information is used. For example, an analysis tool may fail to find the
information that it requires.

Modifying layers

This is a totally transparent operation. Any change to the color, style, or stipple information (including
changes to the color map) will appear in all libraries that use the technology. Changes to I/O equivalences or
Spice parasitics will be available to all existing libraries. A change of the layer function may affect the
technology editor's ability to decode the nodes and arcs that use this layer (for example, if you change the
function of the "polysilicon" or "diffusion" layers that form a transistor, the editor will be unable to identify
this transistor). Renaming a layer has no effect.

176 Using The Electric VLSI Design System

Modifying arcs, modifying nodes

This is not as simple as layer modification because the arcs and nodes appear in the circuit libraries, whereas
the layers do not. If you rename a node or arc, it will cause errors when libraries are read that make use of
nodes with the old name. Therefore, you must create a new node or arc first, convert all existing ones to the
new type, and then delete the old node or arc.

Many of the pieces of special information on the top of the node and arc cells apply to newly created circuitry
only, and do NOT affect existing components already in libraries. The arc factors "Fixed−angle", "Wipes
pins", "Extend arcs", and "Angle increment" have no effect on existing libraries. The node factor "Square
node" also has no effect on existing circuitry and gets applied only in subsequent designs.

Other factors do affect existing circuitry. Changes to the "Function" field, in both arcs and nodes, pass to all
existing components, thus affecting how analysis tools treat the old circuits. If the "Serpentine Transistor"
field in nodes is turned off, any existing transistors that have serpentine descriptions will turn into large
rectangular nodes with incorrect connections (i.e. get trashed). Unfortunately, it may become impossible to
keep the "Serpentine Transistor" field on if the geometry does not conform to standards set by the technology
editor for recognizing the parts. If a node is not serpentine, turning the factor on has no effect. Finally, the
node factors "Invisible with 1 or 2 arcs" and "Lockable" correctly affect all existing circuitry.

A more common modification of arcs and nodes is to change their graphical descriptions. A simple rule
applies to all such changes: if you change the size of the bounding box, it causes possibly unwanted
proportion changes in all existing circuitry. This is because the bounding box information is all that is stored
in the library, and layer sizes are defined in terms of that box.

For example, assume that
there is an active arc
defined with two layers:
diffusion (2 wide) and
well (8 wide). The arcs in
the libraries are therefore
recorded as being 8 wide
(the largest size). The
system knows that the
diffusion is narrower
than the overall arc by 3
on each side.

Now, if you change the well so that it is 10 wide, the system will define the diffusion to be narrower than the
overall arc by 4 on each side, and for the existing 8−wide arcs, the diffusion will shrink to zero and disappear.
These arcs must be resized individually, which can be tedious.

Here is an example of how node geometry changes can also make trouble. Assume that there is a transistor
that has an active piece (2 wide) and a gate piece (2 wide). Each piece extends beyond the transistor area by
2, thus making the entire node 6x6 in size. The size of each cross piece will be defined to be 2 narrower than
the bounding box on each side. If the pieces are changed so that they extend by only 1, then the definition of
each strip will change to being 1 less than the box size on each side. All existing 6x6 transistors will suddenly
have 4x4 gate areas where they used to be 2x2.

In both of these examples, it may be preferable to keep the old technology and give the new technology a
different name. Then the old libraries can be read into the old technology, and the Make Alternate Layout

 Using The Electric VLSI Design System 177

View... command (in menu View) can be used to translate into the new technology. This command uses node
and arc functionality to associate components, scaling them appropriately relative to their default sizes. The
change is completed by deleting the old technology, renaming the new technology to the old name, and then
saving the library.

Modifying miscellaneous information

This last situation is typically transparent: changed information appears in all existing libraries, and affects
those subsystems that make use of the information. For example, a change to the Spice resistance will be seen
when a Spice deck is next generated.

178 Using The Electric VLSI Design System

Chapter 8: Creating New Technologies

8−9: Examples of Use

To fully understand technology editing, some examples are appropriate. Two examples will be given: a
simple one that modifies the appearance of a pattern, and a more complex example in which a new primitive
node is created. Both examples are based on the MOSIS CMOS technology, so they presume that the
Convert Technology to Library for Editing... command (in menu Edit / Technology Specific) has been
issued and the "mocmos" entry was selected.

Example: Modifying a Layer's Appearance

In this first example, the user simply wishes to change the Metal−2 layer from a solid fill to a stipple pattern.

This particular task is so basic that it can be done with the "Layers" preferences, but it illustrates the basic
steps of making a change. First, edit the layer cell for "metal−2". The display will show the layer with all of
its associated information.

Because every layer has a default stipple pattern used for printing, all that is necessary is to change the
"Style" field from solid to patterned. To do this, double−click on the "Style" text and select "Patterned". The
technology is now modified and can be converted back with the Convert Library to
Technology... command.

 Using The Electric VLSI Design System 179

Example: Creating a New Node

The second example is more extensive: creation of a new primitive node. In this case, the new node is a
contact between metal−2 and polysilicon.

To create the node, use the context menu
on the "TECHNOLOGY NODES" tab of
the explorer window, select "Create New
Node", and name the node appropriately.

At this point, the display will show only the textual information about the node (because the graphical
information is yet to be supplied). The textual information consists of five factors that now fill the screen.

You should begin by changing the
"Function" factor to "contact"
(double−click it and select the appropriate
function). Then pan back so there is room
to describe the node graphically. The other
factors are properly set for a contact.

To place a piece of geometry (for
example, some polysilicon), click over
the filled box entry in the component
menu (third from the top) and then
click in the edit window. This
geometry now has shape, but no layer
associated with it. To assign a layer,
double−click on the geometry. Then
choose "polysilicon−1". The black box
will change appearance to that of a
polysilicon layer. You can move and
stretch this box appropriately.

In this example, assume that a contact between polysilicon and metal−2 has three layers: polysilicon−1,
metal−2, and contact cut. Therefore, the above operation must be done two more times to place the metal−2
and contact cut layers.

Besides this pure geometry, there must be two other items in the node: a highlight layer and a port. The
highlight layer is obtained by selecting the "HIGH" entry from the component menu. It is then placed and
stretched so that it encloses the contact (highlight layers define the size of the node, and this means that they
will typically surround the geometry).

180 Using The Electric VLSI Design System

The other item that must be created is a port
(more than one can be created, but for contacts,
one is sufficient). Select the "PORT" entry
from the menu on the left and place it in the
display. You will be prompted for a port name,
after which you can further move or stretch the
port. Besides a location and a name, ports must
specify which arcs may connect to them. To do
this, double−click on the port.

The resulting menu lists all of the arcs and
indicates possible connectivity. Note that the
last two entries define the permissible range of
angles to which arcs may connect. For a contact
such as this, arcs may connect at any angle, so
the default values are correct.

When all of the geometry, highlighting, and ports have been placed, you can double−check your work with
the Identify Primitive Layers command (in menu Edit / Technology Specific), which will display this
information (note that the port name "Center" has been moved away for clarity):

The final step in the definition of this node is to create three more copies that illustrate scaling in both axes.
This is done simply by selecting all five objects and using the Duplicate command (in menu Edit). Once
duplicated in a new location, each piece must be stretched appropriately. In this example, the contact cut is
designed so that the number of cut elements grows with the node. Thus, when stretched horizontally or
vertically, there are two cuts, and when stretched in both directions there are four cuts. The technology editor
will determine precise multicut rules from the cut spacing and the amount of stretch, so that even more cuts
will appear as the node grows larger. The finished node definition is shown below:

 Using The Electric VLSI Design System 181

All that is necessary is to convert this library back to a technology, and the new technology will have this
node.

Of course, the newly created technology is valid only during the current session. Therefore, to preserve this
technology, save the library to disk. In subsequent sessions, you must read the technology library and convert
it to a technology before using it. Alternatively, you can request the system to write Java code for the
technology and compile it into Electric..

182 Using The Electric VLSI Design System

Chapter 9: Tools

9−1: Introduction to
Tools

There are many different tools available in Electric for doing both synthesis and analysis of circuitry.
Synthesis tools include routers, compactors, circuit generators, and so on. Analysis tools include design−rule
checkers, network comparison, and many simulators. To see a list of tools, including which ones are active,
use the List Tools command (in menu Tool). This chapter covers many of the tools available in Electric.

When a tool is running, it may take a long time. You can see it under the "JOBS" entry of the cell explorer
(see Section 4−8).

After a tool has run, it may reports errors in the ERRORS section of the cell explorer. To browse these errors,
use the Show Next Error and Show Previous Error commands (in menu Edit / Selection) or type the ">"
an "<" keys.

A number of common tool controls are available from the "General" preferences (in menu File /
Preferences..., "General" section, "General" tab), especially in the "I/O" and "Jobs" section.

Most netlisters insert date and version information in the comments at the head of the generated file. You can
request that this information be omitted by unchecking "Include date and version in output files".

Most of the commands to generate an input deck for a simulator (a netlist) prompt the user for the desired
file. If "Show file−selection dialog before writing netlists" is unchecked, however, the file is written (or
overwritten) without prompt. This is useful in repetitive iterations of design/simulate, and saves the
cumbersome file−selection dialog. However, it can be dangerous because it overwrites files without asking.

For more information about "Working directory", see Section 3−9−1.

 Using The Electric VLSI Design System 183

In the "Jobs" section,
"Beep after long jobs"
requests that any job
which runs longer
than a minute make a
beep sound when
done.

You can set the
maximum number of
errors that will be
reported at once. By
default, there is no
limit to the number of
errors.

For more information
about "Maximum
undo history", see
Section 6−7.

For more information
about the "Display"
section, see Section
1−7 ("Show
hierarchical cursor
coordinates in status
bar"), Section
4−8 ("Side Bar
defaults to the right
side"), Section
3−5 ("Always prompt
for index when
descending into array
nodes"), and Section
4−4−2 ("Panning
distance").

For more information about the "Memory" section, see Section 1−3.

184 Using The Electric VLSI Design System

#chap04-04-02
#chap04-04-02

Chapter 9: Tools

9−2−1: Incremental DRC

The incremental design−rule checker is always running, examining your work, and issuing error messages
when an error is detected.

To control the DRC, use the "DRC" preferences (in menu File / Preferences..., "Tools" section, "DRC" tab).

By default, the incremental
design−rule checker is on. To
turn it off, uncheck the "On"
checkbox in the "Incremental
DRC" section.

MOS contact nodes
automatically increase the
number of cuts when they
grow larger (see Section
7−4−1). Because of this, very
large contact nodes can create
excessive work for the
design−rule checker as it
examines each of the cuts. To
save time, check the "Ignore
center cuts in large contacts"
check box, which will
examine only the cut layers
around the edges of contact
nodes.

DRC rules for new technologies might require special rules, which can be time consuming. To ignore these
errors, check "Ignore area checking" (for minimum area rules) and "Ignore extension rules" (for special
overlap rules).

After analysis of the circuit, you can review the errors by typing ">" and "<" to step to the next and previous
error that was found. You can also see a list of errors in the cell explorer (see Section 4−8).

 Using The Electric VLSI Design System 185

9−2−2: Hierarchical DRC

The hierarchical design−rule checker uses the same rules and techniques as the incremental checker, but it
checks all levels of hierarchy below the current cell. To run it, use the Check Hierarchically command (in
menu Tool / DRC). To check only a selected subset of the current cell, use Check Selection Area
Hierarchically.

After analysis of the circuit, you can review the errors by typing ">" and "<" to step to the next and previous
error that was found. You can also see a list of errors in the cell explorer (see Section 4−8).

After a cell has passed Hierarchical DRC with no errors, it is tagged with the current date. In subsequent runs
of the Hierarchical DRC, if the cell has not been modified since that date, it is not rechecked. (However, if
you change the DRC rules or the technology options, all date information is cleared.) If you wish to force all
cells to be rechecked, use the "Clear valid DRC dates" button in the "DRC" preferences (in menu File /
Preferences..., "Tools" section, "DRC" tab). To see which cells have passed Hierarchical DRC, use the
General Cell Lists... command (in menu Cell / Cell Info) A "D" is shown in on the right for cells that are
DRC current (see Section 3−7−1).

There are three levels of checking that can be requested in the "DRC" preferences, each consuming more
time and finding more errors.

"Report just 1 error per cell" tells the system to stop checking a cell after the first error has been
found. By using this option, you can more quickly determine which cells in the design are correct,
without knowing exactly where the errors lie. Then, you can go to the cells with errors and do a more
complete check.

•

"Report just 1 error per node or arc" is the default. It stops checking a node or arc when it has found
any design rule violation.

•

"Report all errors" tells the system to continue checking a node or arc, even if an error has been
found. This will report all violations found, but can take more time.

•

186 Using The Electric VLSI Design System

9−2−3: Coverage Rules

Some foundries request that each layer occupy a minimum percentage of the chip. To enforce such rules,
additional pieces of geometry must be placed around the chip to fill that layer.

To check for proper minimum
layer coverage, use the Check
Area Coverage command (in
menu Tool / DRC). To control
the coverage rules, use the
"Coverage" preferences (in
menu File / Preferences...,
"Tools" section, "Coverage"
tab). Each layer in the
technology has a minimum
percentage of coverage that is
needed.

The coverage check proceeds
in a "tiled" manner, checking
rectangular areas of the cell.
For example, to check each
100x100 unit area of the cell,
set "Width" and "Height" to
100, and set "DeltaX" and
"DeltaY" to 100.

The List Layer Coverage on Cell command is another way to compute the percentage of the cell that is
covered by each layer. This command covers the entire cell without breaking it into tiled rectangles.

9−2−4: Assura DRC

Electric is able to read the output of Cadence's Assura design−rule checker. These error files (with the
extension ".err") can be read with the Import Assura DRC Errors... command (in menu Tool / DRC). After
reading the error file, you can review the errors by typing ">" and "<" to step to the next and previous error
that was found. You can also see a list of errors in the cell explorer (see Section 4−8).

9−2−5: Design Rules

Four types of errors are detected by the incremental and hierarchical design−rule checkers. Spacing errors are
caused by geometry that is too close, but not connected. Notch errors are caused by geometry that is too
close, but connected. Minimum size errors are caused by geometry that is too small. Resolution errors are
caused by geometries that are smaller than a requested resolution amount.

In addition to examining geometry, the design−rule checkers use connectivity information to help find
violations. This use of network information helps the designer to debug circuit connectivity. For example, if

 Using The Electric VLSI Design System 187

two overlapping nodes are not joined by an arc, they may be considered to be in violation, even if their
geometry looks right. This is because the checkers know what is connected and have a separate set of rules
for such situations.

To help guide the design−rule checker, a "cloaking" layer can be placed over areas that are not to be
examined. This cloaking layer is created by clicking the "Misc." entry of the component menu and selecting
"DRC Exclusion". Any errors that fall inside of this node's area are ignored.

To edit the design rules, use the "Design Rules" preferences (in menu File / Preferences..., "Technology"
section, ""Design Rules" tab). The dialog allows you to examine and modify the spacing limits for the current
technology. Each rule has a numeric value (size or distance) as well as a textual description of the rule. The
dialog is divided into two parts: "Node Rules" and "Layer Rules".

In the "Node Rules" section, you may set the minimum size of each node in the current technology.

In the "Layer Rules" section, you may set the minimum size, area, and enclosure area of each layer. You may
also set the inter−layer spacing (between the "From Layer" and the "To Layer"). Use the "Show only 'to'
entries with rules" to restrict the displayed rules to those with valid values.

188 Using The Electric VLSI Design System

The layer−to−layer spacing rules appear in 3 forms: normal, wide, and multicut. Normal and multicut rules
come in two flavors: connected and unconnected. The connected rules apply to pieces of geometry that are
electrically connected; the unconnected rules apply to unconnected geometry. The normal rules also have a
special Edge rule applies only to unconnected layers and ignores overlap when considering spacing distance.

The wide rules apply to large geometry. Although some technologies may have many different rules for
different definitions of "large", the MOSIS CMOS technology has only one such rule, if the width is greater
than a specified value.

The bottom of the dialog has some special features of design rules:

The "Factory Reset" button restores all rules to the original set built into Electric.•
The "Foundry" controls which foundry is the target (these are variations on the design rules).
Currently, this is not used.

•

 Using The Electric VLSI Design System 189

The "Min resolution" is the minimum resolution that can be manufactured. If zero, no resolution
check is done. When checking resolution, all geometry of that size or less will be flagged as
resolution errors. For example, current MOSIS rules require that no boundaries be quarter−lambda or
less, so a value of .25 in this field will detect such violations.

•

Note that the MOSIS CMOS design rule 6.7b is not checked by Electric because it is difficult to detect
properly. This error is never fatal, and the worst case of missing this error is that active and poly are closer by
1/2 lambda, which merely results in an increase in capacitive coupling between them. If this fringing
capacitance is important, you've probably got so much polysilicon in your circuit that it has bigger problems.

190 Using The Electric VLSI Design System

Chapter 9: Tools

9−3−1: Well and
Substrate Checking

To check the well and substrate layers, use the Check Wells command (in menu Tool / ERC). This does a
more thorough job of checking the layers than the design−rule checker.

After analysis is done, you can review the errors by typing ">" to see the next error and "<" to see the
previous error. You can also see the list of errors in the cell explorer (see Section 4−8).

You can control the Well Checker with the "Well Check" preferences (in menu File / Preferences..., "Tools"
section, "Well Check" tab).

The Well Checker makes sure that there are well contacts in every area of well. The dialog allows you to
relax that restriction and demand only 1 well contact in each cell, or not to check for contacts at all.

The Well Checker also checks that there is a connection to power and ground in the appropriate places. You
can disable these checks in the "Well Check" dialog.

An additional well check is to find the farthest distance from a substrate contact to the edge of that area. This
check takes more time to do, and so it can be disabled.

 Using The Electric VLSI Design System 191

The Well Checker can check spacing rules between well areas. Although this is generally the domain of the
Design Rule Checker (DRC), it could be done here by checking "Check DRC Spacing Rules for Wells".
Since the well checker has not been designed for DRC purposes, the algorithm is not efficient and therefore
the option is off by default.

Finally, the Well Checker reports the maximum distance from a well contact to any point on the well. This is
useful when making sure that there are sufficient contacts for each area.

9−3−2: Antenna Rule Checking

Antenna rules are required by some IC manufacturers to ensure that the transistors of the chip are not
destroyed during fabrication. In such processes, the wafer is bombarded with ions in order to create the
polysilicon and metal layers. These ions must find a path to through the wafer (to the substrate and active
layers at the bottom). If there is a large area of poly or metal, and if it connects ONLY to gates of transistors
(not to source or drain or any other active material) then these ions will travel through the transistors. If the
ratio of the poly or metal layers to the area of the transistors is too large, the transistors will be destroyed.

To check for antenna rule violations, use the Antenna Check command (in menu Tool / ERC). After
analysis is done, you can review the errors by typing ">" to see the next error and "<" to see the previous
error. You can also see the list of errors in the cell explorer (see Section 4−8).

You can control the
Antenna Checker with
the "Antenna Rules"
preferences (in menu
File / Preferences...,
"Tools" section,
"Antenna Rules" tab).
The dialog lets you
modify the required
ratio of a layer (poly or
metal) to the transistor
area.

192 Using The Electric VLSI Design System

Chapter 9: Tools

9−4−1: Introduction to
Simulation

Electric has two built−in simulators (described later) and can generate decks for many other simulators. The
abilit to interface to external simulators is controlled with the Simulation (Spice), Simulation (Verilog), and
Simulation (Others) commands (in menu Tool).

Be aware that the Electric distribution does not come packaged with these external simulators. You must get
your own copy of Spice, Verilog, or any other simulator mentioned here.

Electric can write netlists for these simulators:

Simulator Level
Netlist Command (in Tool /
Simulation)

ArchSim functional Write ArchSim Deck... (Others)

CDL circuit Write CDL Deck... (Spice)

COSMOS switch Write COSMOS Deck... (Others)

ESIM/RNL switch Write ESIM/RNL Deck... (Others)

FastHenry inductance Write FastHenry Deck... (Others)

IRSIM switch Write IRSIM Deck... (Others)

Maxwell circuit Write Maxwell Deck... (Others)

MOSSIM switch Write MOSSIM Deck... (Others)

PAL gate Write PAL Deck... (Others)

RSIM switch Write RSIM Deck... (Others)

SILOS functional Write SILOS Deck... (Others)

Spice circuit Write Spice Deck... (Spice)

Tegas functional Write Tegas Deck... (Others)

Verilog functional Write Verilog Deck... (Verilog)

The ArchSim simulator is a special−purpose experimental simulator. Output from it can be displayed in a
waveform window by using Display ArchSim Journal... (in menu Tool / Simulation (Others)).

For more information on Spice, Verilog, and FastHenry, see the following pages.

9−4−2: Verilog

Electric can produce input decks for Verilog simulation with Write Verilog Deck... command (in menu Tool
/ Simulation (Verilog)). After this has been done, you must run Verilog externally to produce a ".dump" file.

 Using The Electric VLSI Design System 193

Note that the Electric distribution does not come with a Verilog simulator: you must obtain it separately.

After running a Verilog simulation, you can read the ".dump" file into Electric and display it in a waveform
window. This is done with the Plot Verilog VCD Dump... command (in menu Tool / Simulation (Verilog)).
You can also use the Plot Verilog for This Cell command if the cell name and file name are the same. The
Verilog simulation information is then shown in a digital waveform window (see Section 4−12−1 for more).

Before generating Verilog decks, it is possible to annotate circuits with additional Verilog declarations and
code that will be included in the deck. To add Verilog code, select "Verilog Code" under the "Misc." entry in
the component menu of the side bar. To add a Verilog declaration, select "Verilog Declaration" under the
"Misc." entry in the component menu. These pieces of text can be manipulated like any other text object (see
Section 6−8−1 on text).

Additional control of Verilog deck generation is accomplished with the "Verilog" preferences (in menu File /
Preferences..., "Tools" section, "Verilog" tab). A checkbox lets you choose whether or not to use the Verilog
"assign" construct. You can control the type of Verilog declaration that will be used for wires ("wire" by
default, "trireg" if checked). Note that this can be overridden with the Set Verilog Wire command (in menu
Tool / Simulation (Verilog)).

Another properety that can be assigned to transistors is their strength. The Weak command (in menu Tool /
Simulation (Verilog) / Transistor Strength) sets the transistor to be weak. The Normal command restores
the transistor to be normal strength.

The Verilog preferences dialog also lets you attach disk files with Verilog code to any cell in the library.
Once attached, the generated Verilog will use the contents of that file instead of examining the cell contents.
This allows you to create your own definitions in situations where the derived Verilog would be too complex
or otherwise incorrect. For an example of Verilog layout and code, look at the cell "tool−SimulateVERILOG"
in the Samples library (get this library with the Load Library command, in menu Help / Samples).

194 Using The Electric VLSI Design System

9−4−3: Spice

Electric can produce input decks for Spice simulation with Write Spice Deck... command (in menu Tool /
Simulation (Spice)). After this has been done, you must run Spice externally to produce a simulation output
file. Note that the Electric distribution does not come with a Spice simulator: you must obtain it separately.

Once Spice has been run, you can see a plot of the simulation by reading the Spice output file back into
Electric. Since there are may formats of Spice output, you must first set the "Spice Engine" and the "Output
format" fields of the "Spice" Preferences (in menu File / Preferences..., "Tools" section, "Spice" tab). The
"Output format" field is "Standard" for the default output of the Spice engine; "Raw" for rawfile dumps; and
"Raw/Smart" for the rawfile dumps from SmartSpice.

When Electric knows what type of Spice output file to expect, use the Plot Spice Listing... command (in
menu Tool / Simulation (Spice)) to read the file. If the file has the same name as the current cell, you can
more simply use Plot Spice for This Cell, which does not need to prompt for a file name. The Spice
simulation information is shown in an analog waveform window (see Section 4−12−2 for more).

There are many powerful facilities for running Spice with Electric. The example shown here illustrates some
of these facilities. This example is available in the Samples library as cell "tool−SimulateSpice" (you can read
the library with the Load Library command, in menu Help / Samples).

All input values to Spice
are controlled with special
nodes, found in the
"Spice" component menu
entry. Note that the first
time any Spice node is
placed, the library of Spice
parts is loaded into
Electric, so there may be a
delay.

The Spice primitives described here are for Electric's default set. However, additional sets can (and have)
been written. To choose another set, use the "Spice" preferences (in menu File / Preferences..., "Tools"
section, "Spice" tab). Under the setting "Spice primitive set", choose another set. A second set, called
"SpicePartsS3", is tailored towards special Spice3 primitives.

 Using The Electric VLSI Design System 195

#chap04-12-02

In this example, there is a 5−volt supply on the
left. It was created by using the "DC Voltage"
entry under "Spice" entry of the component
menu. Once placed, the text that reads
"Voltage=0V" can be selected and modified
(either with Object Properties... or by
double−clicking on it). The Pulse input signal on
the right is created with the "Pulse" entry under
"Spice" (it has 7 parameters).

There are both voltage and current sources, in
AC and DC form. The pulse input sources are
available as voltage and current. A set of
"two−gate" devices are also available: "CCCS",
"CCVS", "VCCS", "VCVS", and
"Transmission".

It is possible to specify Transient, DC, or AC
analysis by using the "Transient Analysis", "DC
Analysis", and "AC Analysis" subcommands.
Only one such element may exist in a circuit.

For advanced users, there are two special Spice nodes: "Node Set" and "Extension". The Node Set may be
parameterized with an arbitrary piece of Spice code. Truly advanced users may create their own Spice nodes
by modifying the cells in the Spice library.

This example also shows the ability to add arbitrary text to the Spice deck, as shown in the lower−right. To
create this text, use the "Add Spice Card" under the "Misc." button in the component menu. The command
creates a piece of text that can be modified arbitrarily. Whatever the text says will be added to the Spice deck.

Another option that can be used when modeling transistors and other component is to set a specific Spice
model to use for that component. To set a node's model, select it and use the Set Spice Model... command (in
menu Tool / Simulation (Spice)).

The Add Multiplier subcommand places a multiplier on the currently selected node. Multipliers (also called
"M" factors) scale the size of transistors inside of them.

196 Using The Electric VLSI Design System

Some nongraphical information can also be given to the Spice simulator with the "Spice" preferences (in
menu File / Preferences..., "Tools" section, "Spice" tab).

The top part of this dialog allows you to control many of the Spice deck parameters such as:

Spice Engine Can be Spice 2, Spice 3, HSpice, PSpice, Gnucap, or SmartSpice.•
Spice Level Can be 1, 2, or 3.•
Output format The format to expect when reading Spice output.•
Use Parasitics Whether to include simple parasitics in the deck.•
Use Node Names Whether to use actual node names in the deck (Spice 2 can only handle numbers).•
Force Global VDD/GND Whether to force power and ground to be global signal names.•
Use Cell Parameters When set, any parameters defined on the cell will appear in the Spice deck.
When not checked, each parameterized cell appears multiple times in the deck, once for each
different parameter combination. See Section 6−8−6 for more on parameters.

•

Write Trans Sizes in Units Requests that the Spice deck contain scalable size information instead of
absolute size information.

•

Run Program Lets Electric run Spice automatically after the deck has been written.•
Spice Primitive Set Switches between Spice primitive sets. Currently there are only two:
"spiceparts" and "spicepartsG3".

•

Running Spice: Electric can create an external process as specified by the user to run Spice on the generated
netlist. If the pull−down box is set to "Don't Run", nothing is done. If the pull−down box is set to "Run,

 Using The Electric VLSI Design System 197

#chap06-08-06

Ignore Output", the external process is run, and the user is notified when it is finished. If set to "Run, Report
Output", a dialog box is opened to show the user the output produced by the process. Please note that this is a
process, and not a command line command.

There are several options for the process:

Use Dir if specified, this is the working directory of the process.•
Overwrite existing file this will overwrite the existing netlist without prompting the user.•
Run probe this will run the waveform viewer on the output of the Spice run.•
Help tells which environment variables are exported to be used by the process.•
Run program the name of the executable to run.•
with arg the arguments passed to the executable.•

The lower section controls header and trailer cards (placed at the start and end of the Spice deck). This dialog
allows you to specify a disk file with cards to be used instead of the built−in set. You can specify a particular
file or request that the system search for files with the cell's name and a given extension.

Note that the header and trailer information is specific to a particular technology. If you set this information
for one technology, but then use another technology when generating the Spice deck, the information that you
set will not be used. Note also that schematics, although a technology in Electric, are not considered to be
Spice technology. You can set the proper layout technology that you want to use when dealing with
schematics by using the "Use Scale values from this Technology" popup. This popup can be found in the
"Technology" preferences (in menu File / Preferences..., "Technology" section, "Technology" tab).

The bottom section of the dialog allows you to specify a disk file of Spice cards that will be used to describe
any cell. Instead of the cell subcircuit, the specified disk file is "included" in the deck.

198 Using The Electric VLSI Design System

9−4−4: Spice and Verilog Primitives

For both Spice and Verilog, you can create special nodes that augment the genetated deck. Spice even has a
predefined set of primitives, available from the "Spice" entry in the component menu.

Users can define their own Spice or Verilog elements by creating new icons in this or a new library. The icon
should have graphics, exports, optional parameters, and a template. Parameters are created with the Attribute
Properties... command (in menu Edit / Attributes). See Section 6−8−6 for more on parameters. The Spice
template is created with the Set Generic Spice Template command (in menu Tool / Simulation (Spice)). If
the template is specific to a particular version of Spice, use the appropriate template command (Set Spice 2
Template, Set Spice 3 Template, Set HSpice Template, Set PSpice Template, Set GnuCap Template, or
Set SmartSpice Template).

You can also create Verilog elements by using the Set Verilog Template command (in menu Tool /
Simulation (Verilog)). Note that a single cell can contain both Verilog and multiple Spice templates.

To explain the format of a
template, a DC Voltage Source
primitive is used as an example.
Graphics is placed to describe
the look of the symbol (a
"battery" look). Exports are
created at the top and bottom of
the battery with the names
"plus" and "minus". A single
parameter is defined called
"Voltage" with a default value
of "0V". Finally, a Spice
template is created that has the
string

V$(node_name) $(plus)
$(minus) DC $(Voltage)

This string contains substitution expressions of the form $(SOMETHING) where SOMETHING can be an
export name, a variable, or "node_name". So, in this example, $(node_name) will be replaced with the
name of the voltage node; $(plus) will be replaced with the net name attached to the positive terminal;
$(minus) will be replaced with the net name attached to the negative terminal; and $(Voltage) will be
replaced with the voltage value specified by the user.

The set of Spice primitives in Electric is useful, but far from complete. A second set, called "SpicePartsS3",
is tailored towards special Spice3 primitives. There are no Verilog primitives in the current release of
Electric. Users who define new primitives are encouraged to share these with the entire community by
contacting Static Free Software.

 Using The Electric VLSI Design System 199

#chap06-08-06
mailto:info@staticfreesoft.com

9−4−5: FastHenry

FastHenry is an inductance analysis tool (see the papers of Jacob White). When a FastHenry deck is
generated, a subset of the arcs in the current cell are written. To include an arc in the FastHenry deck, select it
and use the FastHenry Arc Properties... command (in menu Tools / Simulation (Others)).

This command presents a dialog
with FastHenry factors for the
selected arc. The most important
factor is at the top: "Include this
arc in FastHenry analysis". By
checking this, the arc is described
in the FastHenry deck. Once this is
checked, other fields in the dialog
become active. You can set the
thickness of this arc (the default
value shown will be used if no
override is specified). You can set
the number of subdivisions that
will be used in height and width
(again, defaults are shown). You
can even set the height of the two
ends of the arc.

You can partition the arcs into different groups. Click the "New Group" button to define a group. After that,
arcs can be assigned to one or more groups.

200 Using The Electric VLSI Design System

http://rleweb.mit.edu/rlestaff/p-whit.htm

After all arcs have been marked, you can generate a FastHenry deck with the Write FastHenry
Deck... command (in menu Tools / Simulation (Others)). Before doing that, however, you can set other
options for FastHenry deck generation. To do this, use the "FastHenry" preferences (in menu File /
Preferences..., "Tools" section, "FastHenry" tab).

This dialog allows you to set the type of frequency analysis (single frequency or a sequence specified by a
start, end, and number of runs per decade). You can choose to use single or multiple−pole analysis (and if
multiple, you can specify the number of poles). The FastHenry Options dialog also allows you to set defaults
for the individual arcs that will be included in the deck. You can specify the default thickness, and the default
number of subdivisions (in height and width).

 Using The Electric VLSI Design System 201

Chapter 9: Tools

9−5−1: IRSIM

Electric has a built−in simulator, Stanford's IRSIM, which uses RC models to accurately simulate transistors
at a gate−level. IRSIM is not packaged with the standard Electric distribution. To obtain it, you must get the
additional "plugin" JAR file from Static Free Software (see Section 1−5 for instructions on installing
plugins).

To simulate the current cell with IRSIM, use the IRSIM: Simulate Current Cell command (in menu Tool /
Simulation (Built−in)). After issuing this command, a waveform window will appear to control the
simulation (see Section 4−12−1 for more). To generate an input deck for IRSIM without running the
simulator, use the IRSIM: Write Deck... command. To simulate an IRSIM deck (that is, simulate the file,
not the circuit), use the IRSIM: Simulate Deck... command. Note: if these commands do not appear in the
menu, then IRSIM has not been installed.

Since the IRSIM engine is running inside of Electric, you can place stimuli on the circuit and see the results
immediately (also described in Section 4−12−1). Note that the command to save stimuli (Save Stimuli to
Disk... of menu Tool / Simulation (Built−in)) writes an IRSIM "command file" which can be edited by
hand.

202 Using The Electric VLSI Design System

http://www.staticfreesoft.com

The "Simulators" preferences (in
menu File / Preferences..., "Tools"
section, "Simulators" tab), offers
some controls for IRSIM. The
general controls at the top are
discussed in Section 4−12−1.

IRSIM uses a parameter file to
describe timing and parasitic
information. Two of these files come
packaged with Electric
("scmos0.3.prm" and
"scmos1.0.prm"), but you can create
your own and tell IRSIM to use it. In
addition to the parameter file, you
can select the simulation model that
IRSIM uses. The default is a RC
model, but a Linear model is also
available.

Advanced users who edit their own
command files may enter specialized
IRSIM debugging commands. These
commands depend on a set of flags
to determine the type of debugging
to do. Checkboxes in the "IRSIM
Debugging" section control these
debugging flags.

The bottom section has two miscellaneous IRSIM controls.

"Show IRSIM commands" requests that the system display the command file instructions as they are
applied during simulation.

•

"Use Delayed X propagation" does less conservative, but potentially more accurate calculation of the
time required to propagate an undefined (X) value in the circuit. This improved propagation delay
calculation has been shown to be effective in asynchronous circuits.

•

 Using The Electric VLSI Design System 203

9−5−2: ALS

Electric has a built−in gate−level simulator called ALS that can simulate schematics, IC layout, or VHDL
descriptions. The simulator already knows about MOS transistors and some digital logic gates. It can be
augmented with functional descriptions of any circuit using the hardware description language described later
in this section.

For an example of ALS simulation, load the "samples" library and simulate the cell
"tool−SimulateALS{sch}". You can load the samples library with the Load Library command (in menu
Help / Samples).

To begin simulation of the circuit in the current window, use the ALS: Simulate This Cell command (from
menu Tools / Simulation (Built−in)). After issuing this command, a waveform window will appear to
control the simulation (see Section 4−12−1 for more). Since the ALS engine is running inside of Electric, you
can place stimuli on the circuit and see the results immediately.

ALS is able to handle transistors with varying strength. To set a transistor to be weak, use the
Weak command (in menu Tool / Simulation (Verilog) / Transistor Strength). To restore the strength to
normal, use the Normal command. Note that this must be done before simulation begins.

Preferences

The "Simulators" preferences (in menu File / Preferences..., "Tools" section, "Simulators" tab) has some
controls that affect ALS simulation. The "Multistate display" check tells the simulator to show waveform
signals with different colors to indicate different strengths. Without this, a single color is used everywhere.
The other general controls at the top are discussed in Section 4−12−1.

9−5−3: ALS Concepts

The user should be aware that the
ALS simulator translates the circuit
into VHDL, then compiles the VHDL
into a netlist for simulation. This
means that when a layout or schematic
is simulated, two new views of that
cell are created: {VHDL} and
{net.als}. Use the Edit VHDL
View (in menu View) to see the
VHDL code.

When simulation is requested, the cell in the current window is simulated. Date checking is performed to
determine whether VHDL translation or netlist compilation is necessary. If you are currently editing a VHDL
cell, it will not be regenerated from layout, even if the layout is more recent. Similarly, if you are currently
editing a netlist cell, it will not be regenerated from VHDL, even if that VHDL is more recent. Thus,
simulation of the currently edited cell is guaranteed.

Note that the presence of VHDL in the path to simulation means that it can simulate VHDL that is entered
manually. You can type this VHDL directly into the cell (see Section 4−10 for more on text editing). Also,
you can explicitly request that VHDL be produced from schematics or layout with the Make VHDL
View command (in menu View).

204 Using The Electric VLSI Design System

This complete VHDL capability, combined with the Silicon Compiler which places and routes from VHDL
descriptions, gives Electric a powerful facility for creating, testing, and constructing complex circuits from
high−level specifications. See Section 9−12 for more on the Silicon Compiler.

Behavioral Models

When the VHDL for a circuit is compiled into a netlist, both connectivity and behavior are included. This is
because the netlist format is hierarchical, and at the bottom of the hierarchy are behavioral primitives.
Electric knows the behavioral primitives for MOS transistors, AND, OR, NAND, NOR, Inverter, and XOR
gates. Other primitives can be defined by the user, and all of the existing primitives can be redefined.

To create (or redefine) a primitive's behavior, simply create the {net.als} view of the cell with that primitive's
name. Use the New Cell... command (in menu Cell) and select the "netlist.als" view. For example, to define
the behavior of an ALU cell, edit "alu{net.als}", and to redefine the behavior of a two−input And gate, edit
"and2{net.als}". The compiler copies these textual cells into the netlist description whenever that node is
referenced in the VHDL.

The netlist format provides three different types of entities: model, gate, and function. The model entity
describes interconnectivity between other entities. It describes the hierarchy and the topology. The gate and
function entities are at the primitive level. The gate uses a truth−table and the function makes reference to
Java−coded behavior (which must be compiled into Electric, see the module
"com.sun.electric.tool.simulation.als.UserCom.java"). Both primitive entities also allow the specification of
operational parameters such as switching speed, capacitive loading and propagation delay. (The simulator
determines the capacitive load, and thus the event switching delay, of each node of the system by considering
the capacitive load of each primitive connected to a node as well as taking into account feedback paths to the
node.)

A sample netlist describing an RS latch model is shown below. Note that the "#" character starts a comment.

 # model declaration for the figure
 model main(set, reset, q, q_bar)
 inst1: nor2(reset, q_bar, q)
 inst2: nor2(q, set, q_bar)

 # gate description of nor2
 gate nor2(in1, in2, out)
 t: delta=4.5e−9 + linear=5.0e−10
 i: in1=L in2=L o: out=H@2
 i: in1=H o: out=L@2
 i: in2=H o: out=L@2
 i: o: out=X@2

When combined, these entities represent a complete description of the circuit. Note that when a gate,
function, or other model is referenced within a model description, there is a one−to−one correspondence
between the signal names listed at the calling site and the signal names contained in the header of the called
entity.

 Using The Electric VLSI Design System 205

Simulator Internals

The ALS simulator simulates a set of simulation nodes. A simulation node is a connection point which may
have one or more signals associated with it.

A simulation node can have 3 values (L, H, or X) and can have 4 strengths (off, node, gate, and VDD, in
order of increasing strength). It is thus a 12−state simulator. In deciding the state of a simulation node at a
particular time of the simulation, the simulator considers the states and strengths of all inputs driving the
node.

Driving inputs may be from other
simulation nodes, in which case the driving
strength is "gate" (i.e. H(gate) indicates a
logic HIGH state with gate driving
strength), from a power or ground supply
("VDD" strength) or from the user (any
strength). If no user vector has been input at
the current simulation time, then the input
defaults to the "off" strength.

In the above example, the combination of a high and a low driving input at the same strength from the signals
"out" and "in2" result in the simulation algorithm assigning the X (undefined) state to the output signal
represented by "q". This example also shows the behavior of part of the simulation engine's arbitration
algorithm, which dictates that an undefined state exists if a simulator node is being driven by signals with the
same strength but different states, providing that the strength of the driving signals in conflict is the highest
state driving the node.

Another important concept for the user to remember is that the simulator is an event−driven simulator. When
a simulation node changes state, the simulation engine looks through the netlist for other nodes that could
potentially change state. Obviously, only simulation nodes joined by model, gate or function entities can
potentially change state. If a state change, or event, is required (based on the definition of the inter−nodal
behavior as given by the model, gate or function definition), the event is added to the list of events scheduled
to occur later in the simulation. When the event time is reached and the event is fired, the simulator must
again search the database for other simulation nodes which may potentially change state. This process
continues until it has propagated across all possible nodes and events.

206 Using The Electric VLSI Design System

9−5−4: ALS Gates

The gate entity is the primary method of specifying behavior. It uses a truth−table to define the operational
characteristics of a logic gate. Many behavioral descriptions need contain only a gate entity to be complete.

The gate entity is headed by the gate declaration statement and is followed by a body of information. The
gate declaration contains a name and a list of exported simulation nodes (which are referenced in a higher
level model description). The format of this statement is shown below:

Format:
gate name(signal1, signal2,
signal3, ... signalN)

Example: gate nor2(in1, in2, out)

gate and3(a, b, c, output)

There is no limit on the number of signal names that can be placed in the list. If there is not enough room on a
single line to accommodate all the names, simply continue the list on the next line.

The i: and o: Statements (Input and Output)

The i: and o: statements are used to construct a logical truth table for a gate primitive. The signal names and
logical assertions which follow the i: statement represent one of many possible input conditions. If the logic
states of all the input signals match the conditions specified in the i: statement, the simulator will schedule
the outputs for updating (as specified in the corresponding o: statement). The logical truth table for a two
input AND gate is shown below:

 gate and2(in1, in2, output)
 i: in1=H in2=H o: output=H
 i: in1=L o: output=L
 i: in2=L o: output=L
 i: o: output=X

The last line of the truth table represents a default condition in the event that none of the previous conditions
are valid (e.g. in1=H and in2=X). It should be noted that the simulator examines the input conditions in the
order that they appear in the truth table. If a valid input condition is found, the simulator schedules the
corresponding output assignments and terminates the truth table search immediately.

Signal References in the i: Statement

Besides testing the logical values of a signal, the i: statement can also compare them numerically. The format
of a signal references, which follow the i: statement, is show below:

Format:
signal <operator>
state_value

or:
signal <operator>
other_signal

Operators: = Test if equal

! Test if not equal

< Test if less than

> Test if greater than

Example: node1 = H

 Using The Electric VLSI Design System 207

input1 ! input2

node3 < 16

There is no limit on the number of signal tests that can follow an i: statement. If there is not enough room on
a single line to accommodate all the test conditions, the user can continue the list on the next line of the
netlist.

Signal References in the o: Statement

The signal references which follow the o: statement are used as registers for mathematical operations. It is
possible to set a signal to a logic state and it is possible to perform mathematical operations on its contents.
The format for signal references which follow the o: statement is shown below:

Format:
signal [<operator> operand [
@ <strength>]]

Operators:
= equate signal to value of
operand

+ increment signal by value of
operand

− decrement signal by value of
operand

* multiply signal by value of
operand

/ divide signal by value of
operand

% modulo signal by value of
operand

Strengths: 0 off

1 node

2 gate

3 VDD

Example: qbar = H@3

out1 + 3

out + out1@4

node1 % modulus_node

It should be noted that the logic state of the operand can be directly specified (such as H, 3) or it can be
indirectly addressed through a signal name (such as out1, modulus_node). In the indirect addressing case, the
value of the signal specified as the operand is used in the mathematical calculations. The strength declaration
is optional and if it is omitted, a default strength of 2 (gate) is assigned to the output signal.

The t: Statement (Time Delay)

The propagation delay time (switching speed) of a gate can be set with the t: statement. The format of this
statement is shown below:

Format: t: <mode> = value { + <mode> =

208 Using The Electric VLSI Design System

value ... }

Mode: delta: fixed time delay in seconds

linear: random time delay with
uniform distribution

random: probability function with
values between 0 and 1.0

Example: t: delta=5.0e−9

t: delta=1.0e−9 + random=0.2

It is possible to combine multiple timing distributions by using the + operator between timing mode
declarations. The timing values quoted in the statement should represent the situation where the gate is
driving a single unit load (e.g. a minimum size inverter input).

The t: statement sets the timing parameters for each row in the truth table (i: and o: statement pair) that
follows in the gate description. It is possible to set different rise and fall times for a gate by using more than
one t: statement in the gate description. Assuming that a 2 input NAND gate had timing characteristics of
t(lh) = 1.0 nanoseconds and t(hl) = 3.0 nanoseconds, the gate description for the device would be as follows:

 gate nand2(in1, in2, output)
 t: delta=3.0e−9
 i: in1=H in2=H o: output=L
 t: delta=1.0e−9
 i: in1=L o: output=H
 i: in2=L o: output=H

This example shows that when both inputs are high, the output will go low after a delay of 3.0 nanoseconds
and that if either input is low, the output will go high after a delay of 1.0 nanosecond.

The Delta Timing Distribution of the t: Statement

The Delta timing distribution is used to specify a fixed, non−random delay. The format of a delta timing
declaration is shown below:

Format:
delta =
value

Example: delta = 1.0

delta =
2.5e−9

The value associated with the delta declaration represents the fixed time delay in seconds (1.0 = 1 second,
2.5e−9 = 2.5 nanoseconds, etc.)

The Linear Timing Distribution of the t: Statement

The Linear timing distribution is used to specify a random delay period that has a uniform probability
distribution. The format of a linear timing declaration is shown below:

Format:
linear =
value

Example: linear = 1.0

 Using The Electric VLSI Design System 209

linear =
2.0e−9

The value associated with the linear declaration represents the average delay time (in seconds) for the
uniform distribution. This means that there is an equally likely chance that the delay time will lie anywhere
between the bounds of 0 and 2 times the value specified.

The Random Probability Function of the t: Statement

The random probability function enables the user to model things which occur on a percentage basis (e.g. bit
error rate, packet routing). The format for random probability declaration is shown below:

Format:
random =
value

Example:
random =
0.75

random =
0.25

The value associated with random declaration must be in the range 0.0 <= value <= 1.0. This value represents
the percentage of the time that the event is intended to occur.

A gate which uses the random probability feature must be operated in parallel with another gate which has a
common event driving input. Both these gates should have the same timing distributions associated with
them. When the common input changes state, a probability trial is performed. If the probability value is less
than or equal to the value specified in the random declaration, the gate containing the random declaration will
have its priority temporarily upgraded and its outputs will change state before the outputs of the other gate.
This feature gives the user some level of control (on a percentage basis) over which gate will process the
input data first.

As an example, a system which models a communication channel that corrupts 1% of the data bytes that pass
through it is shown below:

 model main(in, out)
 trans1: good(in, out)
 trans2: bad(in, out)
 gate good(in, out)
 t: delta=1.0e−6
 i: in>0x00 o: out=in in=0x00
 gate bad(in, out)
 t: delta=1.0e−6 + random=0.01
 i: in>0x00 o: out=0xFF in=0x00

The netlist describes a system where ASCII characters are represented by 0x01−0x7F. The value 0x00
indicates there is no data in the channel and the value 0xFF indicates a corrupted character. It is assumed that
there is an external data source which supplies characters to the channel input. It should be noted that the
random declaration is placed on only one of the two gate descriptions rather than both of them. Unpredictable
events occur if the random declaration is placed on both gate descriptions.

210 Using The Electric VLSI Design System

The Fanout Statement

The fanout statement is used to selectively enable/disable fanout calculations for a gate when the database is
being compiled. The format for a fanout statement is shown below:

Format:
fanout =
on

or:
fanout =
off

When fanout calculation is enabled (the default setting for all gates), the simulator scans the database and
determines the total load that the gate is driving. It then multiplies the gate timing parameters by an amount
proportional to the load. If an inverter gate was found to have a propagation delay time of 1 nanosecond when
driving a single inverter input, an instance of that gate would have a propagation delay time of 3 nanoseconds
if it was driving a load equivalent to 3 inverter inputs.

If fanout calculation is turned off for a gate primitive, fanout calculations for all instances of that gate will be
ignored. This feature allows the user to force switching times to a particular value and not have them
modified by the simulator at run time.

The Load Statement

The load statement is used to set the relative loading (capacitance) for an input or output signal. The format
of a load statement is shown below:

Format:
load signal1 = value {
signal2 = value ... }

Example:
load in1=2.0 in2=1.5
in3=1.95

load sa=2.5

The value associated with the signal represents the relative capacitance of the simulation node. When the
timing parameters are specified for a gate description, it is assumed that they are chosen for the situation
where the gate is driving a single (1.0) unit load such as a minimum size inverter input. The load command
tells the simulator that some input structures are smaller or larger (more capacitive) than the reference
standard. The simulator, by default, assumes that all signals associated with gate primitives have a load rating
of 1.0 (unit load) unless they are overridden by a load statement.

The Priority Statement

The priority statement is used to establish the scheduling priority for a gate primitive. The format for a
priority statement is shown below:

Format:
priority =
level

Example: priority = 1

priority = 7

In the event that two gates are scheduled to update their outputs at exactly the same time, the gate with lowest

 Using The Electric VLSI Design System 211

priority level will be processed first. All gate primitives are assigned a default priority of 1 unless they
contain random timing declarations in the gate description. In this case the primitive is assigned a default
priority of 2. This base priority can be temporarily upgraded to a value of −1 if a random trial is successful
during the course of a simulation run. The user is advised to leave the priority settings at their default values
unless there is a specific requirement which demands priority readjustment.

The Set Statement

The set statement is used to initialize signals to specific logic states before the simulation run takes place. The
format for the set statement is shown below:

Format:
set signal1 = <state> @ {
<strength> }

signal2 = <state> @ {
<strength> }

Example:
set input1=H@2 input2=L
input3=X@0

set count=4 multiplier=5
divisor=7@2

If the user does not specify a strength value, the signal will be assigned a default logic strength of 3 (VDD).
This default setting will override any gate output (because the default strength of 2 is used for gate outputs).

The user will find this feature useful in situations where some of the inputs to a logic gate need to be set to a
fixed state for the entire duration of the simulation run. For example, the set and reset inputs of a flip flop
should be tied low if these inputs are not being driven by any logic circuitry. All instances of a gate entity
which contains a set statement will have their corresponding simulation nodes set to the desired state.

9−5−5: ALS Functions

The function entity is an alternate method of specifying behavior. It makes reference to a Java method that
has been compiled into Electric. Because there are only a limited number of these methods, and because the
source code isn't always easy to update, the function entity is of limited use. However, the facility is very
powerful and can be used to efficiently model complex circuits. It permits the designer to work at higher
levels of abstraction so that the overall system can be conceived before the low level circuitry is designed.
Examples of this include arithmetic logic units, RAM, ROM, and other circuitry which is easier to describe in
terms of a software algorithm than a gate level hardware description. To add a function to the simulator, edit
the module "com.sun.electric.tool.simulation.als.UserCom.java".

The function entity is headed by a function declaration statement that gives a name and a list of exports
(which are referenced in a higher level model description). The format of this statement is shown below:

Format: function name(signal1, signal2, signal3, ... signalN)

Example: function JK_FF(ck, j, k, out)

function DFFLOP(data_in, clk, data_out)

function
BUS_TO_STATE(b7,b6,b5,b4,b3,b2,b1,b0, output)

function STATE_TO_BUS(input,
b7,b6,b5,b4,b3,b2,b1,b0)

212 Using The Electric VLSI Design System

The name refers to a Java method, which will find the signal parameters in the same order that they appear in
the argument list. The only four functions currently available are listed above. There are two flip−flops (JK
and D) and two numeric converters that translate between a bus of 8 signals and a composite hexadecimal
digit.

Declaring Input and Output Ports

The i: and o: statements which follow the function declaration are used to tell the simulator which signals are
responsible for driving the function and which drive other events. If any signal in the event driving list
changes state, the function is called and the output values are recalculated. The format of an i: statement,
which contains a list of event driving inputs, is shown below:

Format:
i:
signal1 signal2 signal3 ...
signalN

Example: i: b7 b6 b5 b4 b3 b2 b1 b0

i: input phi phi_bar set
reset

The format of an o: statement which contains a list of output ports is shown below:

Format:
o:
signal1 signal2 signal3 ...
signalN

Example: o: out1 out2 out3

o: q q_bar

Other Specifications

Just as there are special statements that affect the operating characteristics of a gate entity, so are these
statements available to direct the function entity. The t: statement is used to set the time delay between input
and output changes. The load statement is used to set the relative loading (capacitance) for the input and
output ports. The priority statement is used to establish the scheduling priority. The set statement is used to
initialize signals to specific logic states before the simulation run takes place. The format of these statement is
identical to that of the gate entity. Note that the Java method does not have to use the values specified in these
statements and can schedule events with values that are specified directly inside the code.

Example of Function Use

The specification for a 3 bit shift register (edge triggered) is shown below. This circuit uses a function
primitive to model the operation of a D flip−flop:

 model main(input, ck, q2, q1, q0)
 stage0: DFFLOP(input, ck, q0)
 stage1: DFFLOP(q0, ck, q1)
 stage2: DFFLOP(q1, ck, q2)
 function DFFLOP(data_in, clock, output)
 i: clock
 o: output
 t: delta=10e−9
 load clock=2.0

 Using The Electric VLSI Design System 213

It should be noted that the clock is the only event driving input for the flip−flop function. There is no need to
call the function if the signal "data_in" will be sampled only when the event driving signal ("clock") changes
state. The designer can write the function so that it samples the data only when the function is called and the
clock input is asserted high (rising edge triggered). If the clock signal is low when the function is called
(falling clock edge) the procedure can ignore the data and return control back to the simulation program.

The calling arguments to the Java method are set up as a linked list of signal pointers. The simulator places
the arguments into this list in the same order that they appear in the declaration of the function entity. The
programmer requires some knowledge of the internals of the simulator to extract the correct information from
this list and to schedule new events. A complete discussion of function entity programming is beyond the
scope of this document.

9−5−6: ALS Models

As previous examples have shown, the model entity provides connectivity between other entities, including
other model entities. The model may be used in conjunction with gate and function entities to describe the
behavior of any circuit.

The model entity is headed by a model declaration statement and followed by a body which references
instances of other entities, lower in the hierarchy. The model name and a list of exports (which are referenced
in a higher level model description) are included in this statement. The format of the model declaration
statement is shown below:

Format:
model name(signal1, signal2,
signal3, ... signalN)

Example:
model dff(d, ck, set, reset, q,
q_bar)

model shift_reg(input, ck, q3, q2,
q1, q0)

References to instances of primitive objects (gates and functions) and lower level models are used to describe
the topology of the new model to the simulator. The format of an instance reference statement is shown
below:

Format:
instance : model (signal1, signal2,
signal3, ... signalN)

Example: gate1: subgate(input, en, mix)

node5: inverter(mix, out_bar)

It should be noted each instance reference in a model entity must have a unique instance name. The following
is an example of the use of a model entity:

 model latch(input, en, en_bar, out)
 gate1: xgate(input, en, mix)
 gate2: xgate(out, en_bar, mix)
 gate3: inverter(mix, out_bar)
 gate4: inverter(out_bar, out)
 gate xgate(in, ctl, out)
 t: delta=8.0e−9
 t: delta=8.0e−9
 i: ctl=L o: out=X@0
 i: ctl=H in=L o: out=L

214 Using The Electric VLSI Design System

 i: ctl=H in=H o: out=H
 i: o: out=X@2
 gate inverter(in, out)
 t: delta=5.0e−9
 i: in=L o: out=H
 i: in=H o: out=L
 i: o: out=X@2

This example contains the description of a simple latch. When the enable signal is asserted high (en=H,
en_bar=L) the input data passes through the transmission gate (gate1) and then through two inverters where it
eventually reaches the output. When enable is asserted low (en=L, en_bar=H) the input connection is broken
and the feedback transmission gate (gate2) is turned on. The state of the latch is preserved by this feedback
path.

The Set Statement

The set statement is used to initialize signals within the model description to specific logic states before the
simulation run takes place. This feature is useful for tying unused inputs to power(H) or ground(L).

 Using The Electric VLSI Design System 215

Chapter 9: Tools

9−6−1: Introduction to
Routing

The routing tool contains a number of different subsystems for creating wires. Two stitching routers can be
used in array−based design to connect adjoining cells. A maze−router runs individual wires. A river−router is
also available for running multiple parallel wires.

Some of these routers make use of the "Unrouted Arc", a thin−line arc that can connect any two components.
Creating "rats nests" of these arcs forms a graphical specification that the router can use. The unrouted arc is
from the Generic Technology (see Section 7−6−3). To create one, use the Get Unrouted Wire command (in
menu Tool / Routing). Then use standard wiring commands to run the unrouted arc. Another way to get
unrouted wires is to select all or part of an existing route (made with any arc) and use the Unroute command.

Finally, the Copy Routing Topology and Paste Routing Topology commands can be used to create
unrouted arcs in one cell (the "pasted" cell) where there are connections of any kind on another cell (the
"copied" cell). The Paste Routing Topology command uses node and arc names to associate the two cells.

9−6−2: Auto Stitching

The auto−stitching router looks for adjoining nodes that make implicit connections, and places wires at those
connections to make them explicit. For example, if a cell has power and ground rails at the top and bottom,
and there are ports on the left and right of each rail, then the auto−stitching router can be used to connect all
of these rails in a horizontal string of these cells.

The auto−stitcher places a wire when all of these conditions are met:

The design is layout (auto stitching does not work in schematics). •
Ports exist on both nodes. Because wires must run between two ports, you must make exports at
every location where wiring may occur.

•

The nodes inside of the cells (the ones with the exports) must touch or overlap, thus creating an
implicit connection. When a pin node has an export, it should be the same size as any wires
connected to it inside of the cell. This is because a small pin connected to a wide arc will not make an
implicit connection when the arc touches something, because the pin is inside of the arc.

•

The ports must not already be connected to each other. •

To run the auto−stitcher, use the Enable Auto−Stitching command (in menu Tool / Routing). The router
will make all necessary connections, and incrementally add wires as further changes are made to the circuit.
To stop stitching, select the menu entry again to uncheck it. To run the auto−stitcher only once for the current
cell, use Auto−Stitch Now To run it once, and in the highlighted area only, use the Auto−Stitch
Highlighted Now command. Note that this auto−stitches all cell instances that intersect the highlighted area,
so even if only a portion of a cell falls into the highlighted area, the entire cell is stitched.

216 Using The Electric VLSI Design System

#chap07-06-03

The auto−stitcher allows
you to specify a particular
type of wire to use in
routing. By default, the
router figures out which
wire to use. However, in
the "Routing" preferences
(in menu File /
Preferences..., "Tools"
section, "Routing" tab) a
specified wire can be given
(or automatic selection can
be resumed by selecting the
"DEFAULT ARC" entry).

 Using The Electric VLSI Design System 217

9−6−3: Mimic Stitching

One problem with the auto−stitcher is that it may take a different view of the circuit than originally intended.
In an area where more than two cells meet, the auto−stitcher may place many wires in an attempt to connect
all touching ports. Another problem with the auto−stitcher is that it makes explicit only what is already
implicit, and so does not always add all necessary wires.

To control the wiring of arrays of cells more directly, there is the mimic−stitcher. This tool lets the designer
place a wire between two cells, and then it adds other wires between all other similarly configured cells in the
circuit. Thus, it mimics your actions.

Specifically, it mimics all situations where the same ports on the same type of nodes exist, separated by the
same distance.

The "Routing" preferences (in menu File / Preferences..., "Tools" section, "Routing" tab) has many useful
controls for mimic stitching.

First, you can request that
the mimic stitcher also
mimic wire deletions.
Second, you can request
that the mimic stitcher
relax its restriction about
mimicing arcs (by
allowing the ports to be
different, the nodes to be
different, or the node sizes
to be different). You can
also ask the mimic stitcher
to work interactively,
which causes it to examine
all possible restriction sets,
offering to route wires
with increasingly relaxed
acceptance criteria.

To turn on the mimic−stitcher, use the Enable Mimic−Stitching command (in menu Tool / Routing). To
disable the stitcher, use the command to uncheck it. You can also request that the mimic−stitcher run just
once (mimicing the very last wire that was created or deleted) by using the Mimic−Stitch Now command.
Finally, you can request that the mimic−stitcher run just once, mimicing the currently selected arc, by using
the Mimic Selected command.

218 Using The Electric VLSI Design System

9−6−4: Maze Routing

The maze router replaces unrouted arcs with actual geometry. To run it, use the Maze Route command (in
menu Tool / Routing). If networks are selected when the command is issued, those networks are routed. If no
networks are selected, the all unrouted arcs in the current cell are routed.

Note that maze routing is done one wire at a time, and may fail if no path can be found. Therefore it may be
preferable to route the unrouted wires one−at−a−time in order to better control the process.

Note also that maze routing constructs an array which is the size of the route, and searches the array for a
routing path. Therefore, long wires will use large amounts of memory and time.

For an example of maze routing, open the Samples library and edit the cell "tool−RoutingMaze" (you can
read the library with the Load Library command, in menu Help / Samples). This cell has a number of
unrouted wires that can be routed.

9−6−5: River Routing

River routing is the running of multiple parallel wires between two parallel rows (presumably along facing
sides of two cell instances). The wires must remain in sequential order and cannot cross each other. Thus,
they appear as a flowing stream of lines, and have the appearance of a river.

To specify an intended path for the river−router, every connection must be made with an Unrouted arc. Thus,
before river−routing, there should be a series of direct (and presumably nonmanhattan) unrouted arcs. These
arcs are replaced with the appropriate geometry during river−routing.

To convert the unrouted wires into layout, use the River−Route command (in menu Tool / Routing). If there
are unrouted arcs selected, these will be the only ones converted. Otherwise, all unrouted arcs in the cell will
be converted. If it is necessary, nodes may be moved to make room for the river−routed wires.

The river router always routes to the left or bottom side of the routing channel. Thus, if there is a vertical
channel that is very wide, the wires will run to the left side and then jog to their proper location there. The
only way to force routing to the right or top side is to rotate the entire circuit so that these sides are on the left
and bottom.

For an example of river routing, open the Samples library and edit the cell "tool−RoutingRiver" (you can read
the library with the Load Library command, in menu Help / Samples).

 Using The Electric VLSI Design System 219

Chapter 9: Tools

9−7−1: NCC Overview

Improvements

Electric can compare two different cells and determine whether their networks have the same topology. This
operation is sometimes called Layout vs. Schematic (LVS), but because Electric can compare any two
circuits (including two layouts or two schematics) we use the term Network Consistency Checking (NCC).

The Java Electric NCC differs from the C Electric NCC in two signficant ways.

The Java Electric NCC firsts attempts to discover circuit mismatches using a new algorithm called
"Local Paritioning". We do this because Local Partitioning provides much more precise and
intelligible mismatch diagnostics. We fall back upon the Gemini algorithm (Ebeling, Carl, "GeminiII:
A Second Generation Layout Validation Program", Proceedings of ICCAD 1988, p322−325.) only as
a last resort. In practice upwards of 95% of all errors are found by Local Partitioning.

•

The Java Electric NCC has a "hierarchical" mode. When comparing a cell hierarchically, NCC first
tries to compare the cell's descendents. We strongly recommend this mode to the user because it
allows the Local Partitioning algorithm to provide even more precise and intelligible mismatch
diagnostics.

•

The Java Electric NCC is also significantly faster than the C Electric NCC. For example, for one of our chips,
C−NCC flat took 48 minutes, Java−NCC flat took 3.5 minutes, and Java−NCC hierarchical took 15 seconds.

Limitations

NCC has a number of limitations

NCC does not check the substrate connection of transistors. This is because neither C− nor Java−
Electric keep track of the connectivity of the substrate connection of layout transistors. In fact, layout
transistors don't have substrate ports. We plan to remedy this.

•

NCC treats all resistors as short circuits. This is the desired behavior for most of the resistors
produced by the Asynchronous Design Group at Sun. However, it would be nice if certain resistors in
schematics could be matched up against layout resistors. However, neither C− nor Java− Electric
support explicit layout resistors. We plan to remedy this.

•

NCC's error messages are completely text based. There is no integration into the GUI. We plan to
remedy this.

•

Example

For an example of network consistency checking, open the Samples library (in menu Help / Samples / Load
Library) and compare the cells "tool−NCC{lay}" and "tool−NCC{sch}". These two cells are equivalent and
the checker will find them to be so.

220 Using The Electric VLSI Design System

http://www.cs.washington.edu/research/projects/lis/www/gemini/gemini.html

9−7−2: NCC Commands

To compare two cells, use these commands (in menu Tool / NCC):

Schematic and Layout Views of Cell in Current Window Use a heuristic to figure out what to
compare against the cell in the current window. If the current cell is a schematic then compare it
against some layout cell in the same cell group. If the current cell is a layout then compare it against
some schematic cell in the same cell group. Since most cell groups have one layout cell and one
schematic cell, this form of the NCC command is usually the most convenient.

•

Cells from Two Windows Compare the two cells that are displayed in the two opened windows
(there must be exactly two windows). This is useful when the schematic and layout are not in the
same cell group. The command can also be used to compare schematics with schematics or layout
with layout. However, the command refuses to compare icon cells since icons cells don't have
defined connectivity.

•

9−7−3: NCC Preferences

NCC options are available in the "NCC" preferences (in menu File / Preferences... , "Tools" section, "NCC"
tab).

Operation Section

The "Operation" section allows you to select what kind of NCC operation to perform. You can either
compare hierarchically, compare flat, or list all the NCC annotations in the design.

We recommend hierarchical over flat comparison because hierarchical comparisons are faster and the
mismatch diagnostics are much more precise and intelligible. However, transistor size checking of schematics

 Using The Electric VLSI Design System 221

with automatically sized transistors does not work with hierarchical comparisons. If you select "Check
transistor sizes" and your schematics include automatically sized transistors you must also select "Flat
Comparison".

The best way to use NCC is to initially perform all your comparisons hierarchically. This will typically
require many iterations. Once you have gotten your designs to pass hierarchical comparison, turn on size
checking and flat comparison. This will report transistor size mismatches.

Size Checking Section

The "Size Checking" section controls the checking of transistor widths and lengths.

NCC does the following when size checking is enabled. After each topological comparison, NCC checks if it
found any topological mismatches. If NCC found no mismatches then NCC checks, for each pair of matching
transistors, that the widths and lengths are approximately equal.

The two tolerance boxes allow the user to specify how much more the larger of the two matched transistors
may be than the smaller before NCC reports a size mismatch. The "Relative size tolerance" box specifies the
difference in percentage. The "Absolute size tolerance" box specifies the difference in units. NCC reports a
size mismatch when both tolerances are exceeded.

If you enable "Size Checking" and "Hierarchical Comparison" simultaneously then NCC restricts which Cells
it treats hierarchically to ensure a correct answer in the presence of automatically sized transistors. For this
case it compares a pair of Cells hierarchically if and only if each Cell is instantiated exactly once.

Checking All Cells Section

In hierarchical mode NCC attempts to compare all cells in the design starting with those at the leaves and
working it's way toward the root. For that mode it is often best if NCC stops as soon as it finds a mismatch.
To get this behavior the user should check the box: "Halt after finding the first mismatched cell".

However, it is occasionally useful to continue checking even after mismatches have been detected. For
example, the designer might find that although cell ABC mismatches, she is unable to fix ABC because
someone else designed it. When asked to continue, NCC will do the following when comparing cells that use
ABC:

If NCC found no export mismatches when comparing ABC then NCC will use the export names to
identify corresponding ports in the layout and schematic.

•

If NCC found export mismatches when comparing ABC then NCC will flatten the one level of
hierarchy: ABC, before performing the comparison.

•

The check box "Don't recheck cells that have passed in this Electric run" skips the checking of a pair of cells
if they have ever passed in this run of Electric. Because this command is not smart enough to recheck the
cells after either have changed, this command is of very limited utility. At the moment NCC has run
sufficiently fast that it doesn't seem worth the effort to implement anything more sophisticated.

Reporting Progress Section

This panel controls how verbose NCC is in reporting its progress. Most users should leave this at 0.

222 Using The Electric VLSI Design System

Error Reporting Section

The error reporting section controls how many error messages are printed when the Local Partitioning
algorithm has failed to find a mismatch but the Gemini algorithm has. Most users will want to leave these at
the default setting of 10.

9−7−4: NCC Annotations

For certain situations NCC cannot figure out that two cells are equivalent unless the designer supplies extra
information. The designer supplies this extra information by adding NCC annotations to layout and/or
schematic cells. NCC annotation's are represented by attributes placed on cells (see Section 6−8−5). The
attribute's name is NCC. The attribute's value is one or more lines. Each line contains a separate NCC
annotation. Thus, although a Cell can have at most one attribute named NCC, that attribute can contain any
number of NCC annotations.

exportsConnectedByParent <string or regular expression>

Layout cells sometimes contain multiple exports that are supposed to be connected by the parent cell. For
example, a layout cell, A{lay}, might export vdd, vdd_1, vdd_2, and vdd3. The designer expects the cell that
instantiates A{lay} will connect all the vdd exports to a single net: vdd. However, because the corresponding
schematic cell usually only contains a single export, vdd, the NCC of the schematic and layout cells fails.
This situation is most common for the power and ground networks, although it occasionally arises for signal
networks such as clock or precharge.

NCC allows the designer to add the annotation: exportsConnectedByParent to the cell to inform NCC which
exports will be connected by the parent. The keyword is followed by a list of strings and/or regular
expressions. A string matches an export name exactly, for example: vdd. Thus A{lay} can contain the NCC
annotation:

exportsConnectedByParent vdd vdd_1 vdd_2

Alternatively, the designer can use regular expressions. Regular expressions begin and end with the character:
'/'. Thus A{lay} can contain the NCC annotation:

exportsConnectedByParent vdd /vdd_[0−9]+/

When NCC compares a cell with an exportsConnectedByParent annotation it performs the comparison as if
those exports were connected. It is safe for NCC to believe this annotation because NCC also checks the
assertion. When NCC encounters an instance of a cell with an exportsConnectedByParent annotation NCC
reports an error whenever that assertion isn't satisfied.

skipNCC <comment>

The skipNCC annotation should be added to a cell, say B, when:

B{sch} and B{lay} won't pass either flat or hierarchical NCC and •
you want any hierarchical NCC of the parents of B to flatten the one level of hierarchy: cell B. •

If cell B has a skipNCC annotation, then a hierarchical comparison won't check B and will simply flatten
through the one level of hierarchy: B.

 Using The Electric VLSI Design System 223

#chap06-08-05

All the characters following the keyword to the end of the line serve as a comment. This is useful for
documenting why this annotation was necessary. When you ask NCC to compare every cell in the design,
NCC will tell you which cells it is skipping and why. For example, if cell B includes the NCC annotation:

skipNCC layout is missing ground connection

then NCC will print:

Skipping NCC of A because layout is missing ground connection.

A common reason for needing this annotation is an unfortunate situation: the exports of B{sch} and B{lay}
don't match. A skipNCC on B prevents NCC from reporting export mismatches because 1) cell B is not
checked by itself and 2) when a parent of cell B is checked, B's exports are discarded when NCC flattens
through cell B. Although not always possible, it's better to fix export mismatches, because fixing them will
yield clearer mismatch diagnostics when there is a problem.

flattenInstances <string or regular expression> ...

Hierarchical NCCs do not require a perfect match between the schematic and layout hierarchies. Instead,
hierarchical NCC uses heuristics to determine which cell instances must be flattened and which can be
compared hierarchically. The heuristic sometimes make mistakes. When that happens, the flattenInstances
annotation can guide the heuristic.

The list of strings and/or regular expressions are used to match instance names within the cell. Those cell
instances that match are always flattened.

notSubcircuit <comment>

The designer should add the notSubcircuit annotation to a cell, say B, if:

B{sch} and B{lay} will pass NCC when compared separately but •
hierarchical NCC of a parent of B should not treat B as a hierarchical element but should, instead,
flatten through B.

•

One reason for using this annotation is to correct errors made by the heuristic that determines which cells to
flatten and which to compare hierarchically. For example, suppose that the schematics instantiate cell B{sch}
1000 times and the layout instantiates cell B{lay} 500 times. In principle one could use the
flattenInstances annotation to inform NCC which instances to keep and which to flatten. However sometimes
that's more work than it's worth and it's better to add a single notSubcircuit annotation to cell B{sch} or
B{lay} to tell NCC to never treat B as a hierarchical entity.

When hierarchical NCC encounters a notSubcircuit annotation it prints a message that includes the comment
in a manner similar to skipNCC.

The notSubcircuit annotation only affects hierarchical NCCs, it is ignored by flat NCCs.

224 Using The Electric VLSI Design System

joinGroup <cell name>

The designer should add a joinGroup annotation to, say, cell B if NCC should behave as if cell B belonged to
a different cell group and that cell group is in a different library. The cell group to move B to is that cell
group that contains <cell name>. That specification should be fully qualified: library:cell{view}.

Memberships in cell groups is important when NCC performs hierarchical comparisons because NCC
assumes that cells in the same cell group are supposed to be topologically identical. Membership of two cells
in the same cell group is one criteria NCC uses to decide that it should treat them as hierarchical entities and
it should compare them separately.

Occasionally it is impractical to place the layout and schematic views of a cell in the same cell group. For
example when layout is automatically generated from hand drawn schematics it may be better to place the
layout in a different library than the schematics.

blackBox <comment>

Don't compare the Cells in this Cell group; just assume they are topologically equivalent.

The blackBox is useful when a particular arrangement of layout geometry implemements a construct that
Electric doesn't understand. For example, we have used this construct to handle resistors and parasitic bipolar
transistors in the layout.

 Using The Electric VLSI Design System 225

Chapter 9: Tools

9−8−1: Pad Frame
Generation

The Pad Frame generator reads a disk file and places a ring of pads around your chip. The pads are contained
in a separate library, and are copied into the current library to construct the pad frame.

The format of the pad frame disk file is as follows:

celllibrary LIBRARYFILE [copy] ; Identifies the file with the pads

cell PADFRAMECELL ; Creates a cell to hold the pad frame

core CORECELL ; Places cell in center of pad frame

align PADCELL INPUTPORT OUTPUTPORT ; Defines input and output ports on pads

export PADCELL IOPORT [COREPORT] ; Defines exports on the pads

place PADCELL [GAP] [PORTASSOCIATION] ; Places a pad into the pad frame

rotate DIRECTION ; Turns the corner in pad placement

The file must have exactly one celllibrary and cell statement, as they identify the pad library and the
pad frame cell. If the celllibrary line ends with the keyword copy, then cells from that library are
copied into the library with the pad ring (by default, they are merely instantiated, creating a cross−library
reference to the pads library). The file may have only one core statement to place your top−level circuit
inside of the pad frame. If there is no core statement, then pads are placed without any circuit in the middle.

The align statement is used to identify connection points on the pads that will be used for placement. Each
pad should have an input and an output port that define the edges of the pad. These ports are typically the on
the power or ground rails that run through the pad. When placing pads, the output port of one pad is aligned
with the input port of the next pad.

Each pad that is placed with a place statement is aligned with the previous pad according to the alignment
factor. A gap can be given in the placement that spreads the two pads by the specified distance. For example,
the statement:

place padIn gap=100

requests that the "padIn" pad be placed so that its input port is 100 units away from the previous pad's output
port.

If a core cell has been given, you can also indicate wiring between the pads and the core ports. This is done
by having one or more port associations in the place statements. The format of a port association is simply
PADPORT = COREPORT. For example, the statement:

place padOut tap=y

indicates that the "tap" port on the placed pad will connect to the "y" port on the core cell.

226 Using The Electric VLSI Design System

The port association can also create an export on the pad. The statement:

place padOut export io=o7 export tap=core_o7

creates two exports on the pad, "o7" on its "io" port, and "core_o7" on its tap port. For many instances of this
pad type, this notation can be condensed with the use of the name keyword in conjunction with exports
defined for the pad at the start of the file. For example, defining the IO ports as

export padOut io tap

and then changing the place statement to

place padOut name=o7

results in the same ports being exported with the same names. This shorted notation always prepends name
with "core_" on the core port export.

The rotate statement rotates subsequent pads by the specified amount. The statement has only two forms:
rotate c to rotate clockwise, and rotate cc to rotate counterclockwise.

Here is an example of a pad frame disk file, with the finished layout. There is a cell in the Samples library
called "tool−PadFrame" (get it with the Load Library command, in menu Help / Samples). Suppose a text
file is created with with this content, and read with the Pad Frame Generator... command (in menu Tool /
Generation).

; specify library with pads ; place the top edge of pads

celllibrary pads4u.txt place PAD_corner{lay}

place PAD_gnd{lay} gnd_in=gnd

; create a cell called
"padframe"

place PAD_vdd{lay} m1m2=vdd

cell padframe

; place the right edge of pads

; place this cell as the "core" rotate c

core tool−PadFrame place PAD_corner{lay}

place PAD_in{lay} out=pulse

; set the alignment of the pads place PAD_spacer{lay}

; (with input and output export)

align PAD_in{lay} dvddL dvddR ; place the bottom edge of pads

align PAD_out{lay} dvddL dvddR rotate c

align PAD_vdd{lay} dvddL dvddR place PAD_corner{lay}

align PAD_gnd{lay} dvddL dvddR place PAD_out{lay} in=out1

align PAD_corner{lay} dvddL dvddR place PAD_out{lay} in=out2

align PAD_spacer{lay} dvddL dvddR

; place the left edge of pads

rotate c

place PAD_corner{lay}

place PAD_in{lay} out=in1

 Using The Electric VLSI Design System 227

place PAD_in{lay} out=in2

This file places 8 pads in a
ring (2 on each side) and also
places corner "pads" for
making bends. The input
pads connect to the 2 input
ports "a1" and "a2". The
output pads connect to the 3
output ports "out1", "out2",
and "out3" The power and
ground pads connect to the
"vdd" and "gnd" ports.

Note that the generator
places pad instances, but
does not wire them to each
other. In order to create a
uniform ring of power and
ground between the pads,
you can use the Auto−router
or the Mimic−router (see
Section 9−6−1).

Connections between pads
and ports of the core cell use
Unrouted arcs (from the
Generic technology, see
Section 7−6−3). After these
connections are routed with
real geometry, the finished
layout is shown here, fully
instantiated.

228 Using The Electric VLSI Design System

#chap07-06-03

9−8−2: Other Generators

There are other generators built into Electric. These commands (in menu Tool / Generation) may be used:

Coverage Implants Generator Although individual MOS nodes and arcs have the proper amount of
implant around them, a collection of such objects may result in an irregular implant boundary. To
clean this up, you can place pure−layer nodes of implant that neatly cover the implant area. This
command does it automatically. It removes previous pieces of coverage implant before running, so
that the result is a clean cover.

•

ROM Generator... The ROM generator constructs many cells to describe a ROM from a personality
file. You will be prompted for the personality file. The first line of the ROM personality file lists the
degree of folding. For example, a 256−word x 10−bit ROM with a folding degree of 4 will be
implemented as a 64 x 40 array with 4:1 column multiplexers to return 10 bits of data while
occupying more of a square form factor. The number of words and degree of folding should be
powers of 2. The remaining lines of the file list the contents of each word. The parser is pretty picky.
There should be a carriage return after the list word, but no other blank lines in the file. Here is a
sample ROM file:
 1
 010101
 011001
 100101
 101010
 4
 00000000
 10000000
 01000000
 11000000

•

MOSIS CMOS PLA Generator... The MOSIS CMOS PLA generator reads two personality files
(AND and OR) and generates a PLA array. Each file has only two numbers on the first line to define
the size of the array, and the values of the array on subsequent lines. Both the AND file and the OR
file are similar. Example files can be found in the PLA−ROM subdirectory of the
examples directory. Here is some sample PLA logic:

f = (a and b and (not c)) or ((not b) and (not a))

g = (a and c) or ((not a) and (not c))

Here is the AND file for the above logic:

•

 4 3
 1 1 0
 0 0 X
 1 X 1
 0 X 0

Generate gate layouts (MoCMOS) Generates a set of gates in the MOSIS CMOS technology. •

 Using The Electric VLSI Design System 229

Chapter 9: Tools

9−9: Logical Effort

The Logical Effort tool examines a digital schematic and determines the optimal transistor size to use in order
to get maximum speed. The tool is based on the book Logical Effort, by Ivan Sutherland, Bob Sproull, and
David Harris (Morgan Kaufmann, San Francisco, 1999). It is highly recommended that the user be familiar
with the concept of this book before using the Logical Effort Tool.

To control Logical Effort, use the "Logical Effort" preferences (in menu File / Preferences..., "Tools"
section, "Logical Effort" tab). This lets you control a number of settings for Logical Effort analysis.

Logical Effort Gates

A design that is intended to be analyzed with Logical Effort must be composed of special Logical Effort
gates. A Logical Effort gate is simply a schematic or layout cell that conforms to the following specifications:

The cell has an attribute "LEGATE" which is set to "1". •
The cell has only one output, which may have a logical effort attribute (explained below). •
The cell has zero or more inputs/bidirectional ports. Each of these must have a logical effort attribute
(explained below).

•

The cell has an attribute whose name does not matter, but whose value is "LE.getdrive()", and whose
code is set to "Java".

•

230 Using The Electric VLSI Design System

http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-557-6

On the input and output exports of the cell, we can define an attribute named "le" (double−click on the export
text to get the Export Properties dialog, then click the Attributes button to define the attribute). The value of
this attribute is the logical effort of that port. For example, a NAND gate typically has a logical effort on each
input of 4/3, and an output logical effort of 2. An inverter is defined to have an input logical effort of 1, and
an output logical effort of 1.

The size assigned to the logical effort gate is retrieved via the "LE.getdrive()" call. This value can then be
used to size transistors within the gate. The size retrieved is scaled with respect to a minimum sized inverter
(as are all other logical effort parameters). So a size of "1" denotes a minimum sized inverter.

While these attributes are defined on the layout or schematic cell definition, they must also be present on the
instantiated icon or instance of that definition. By default this will be so.

Finally, there must be at least one load that is driven by the gates in order for them to be sized. A load is
either a transistor or a capacitor. Gates that do not drive loads, or that do not drive gates that drive loads, will
not be assigned sizes.

Logical Effort Libraries

Electric comes with a set of libraries that are specially designed for Logical Effort. Use the Load Logical
Effort Libraries (Purple, Red, and Orange) command (in menu Tool / Logical Effort) to read these
libraries.

The Purple library is a set of logic gates that have been tailored for Logical Effort, as described
above.

•

The Red library is a similar set of gates, but they are not setup for Logical Effort. The Red gates can
be used in places where Logical Effort is not to be done.

•

The Orange library is a low−level set of gates that is parameterized for a specific fabrication process.
Orange gates are used in the Purple and Red libraries, but should not be used elsewhere. The Orange
library that comes with Electric is tailored for a generic 180 nanometer process.

•

 Using The Electric VLSI Design System 231

Advanced Features

There are several advanced features that may be added to the cell definition:

Attribute "LEKEEPER=1". This cell is defined as a keeper, whose size will be the size of the
smallest Logical Effort gate driving against it, multiplied by the Keeper Ratio.

•

Attribute "LEPARALLGRP=0". If set to 0, this gate drives by itself. If an integer greater than zero,
all gates with that value whose outputs drive the same network are assumed to drive in parallel. The
size needed to drive the load on the network will be equally divided among those gates.

•

Attribute "su=−1". This specifies the step−up (fanout) of the gate, and overrides the global fanout
specified in the options. If set to −1, this attribute is ignored, and the global value is used.

•

Commands

These commands may be given to the Logical Effort tool (in menu Tool / Logical Effort):

Optimize for Equal Gate Delays Optimizes all Logical Effort gates (cells) to have the same delay.
The delay is specified by the Global fan−out (step−up) option. This is NOT a path optimization
algorithm.

•

Optimize for Equal Gate Delays (no caching) It is intended that both the caching and non−caching
algorithms obtain exactly the same result, however due to the difficulty in obtaining and maintaining
correctness when it comes to caching, the non−caching algorithm is also available.

•

Print Info for Selected Node After running sizing, information about a specific logical effort gate
can be found by selecting the gate instance and running this command.

•

Back Annotate Wire Loads for the Current Cell The Back Annotate Wire Lengths for Current
Cell command runs NCC on the current cell against it's matching layout or schematic cell. Assuming
they match, for each LEWIRE in the schematic cell, it finds the half−perimeter of the matching wire
in the layout cell (as if the layout was flattened), and then changes the "L" parameter on the LEWIRE
to the value. Note, back−annotation is only performed on top level LEWIREs, and it takes into
account the wire's length throughout the layout hierarhcy.

•

Clear Sizes on Selected Node(s) LE sizes are stored as parameters on the LEGATE. Sometimes the
sheer number of sizes can overwhelm the allocated process memory, and can also bloat file sizes
when they are no longer needed. This command deletes saved sizes on a per−node basis.

•

Clear Sizes in all Libraries This command deletes saved sizes everywhere.•

232 Using The Electric VLSI Design System

Chapter 9: Tools

9−10−1: Parasitic
Extraction

The Parasitic Extraction tool is used by netlisters and other parts of the system that need to know about
geometric factors. To control Parasitic Extraction, use the "Parasitic" preferences (in menu File /
Preferences..., "Tools" section, "Parasitic" tab).

Each layer of the current technology is listed, and you can set its unit resistance, area capacitance, and edge
capacitance. In addition, you can set minimum resistance and capacitance values for the entire technology.

The bottom section controls values for the entire technology. You can set the minimum resistance and
capacitance for the entire technology. The "Gate Length Shrink" is a compensation factor for gate lengths.
Some process technologies shrink the gate length by a fixed amount. "Include Gate In Resistance" requests
that a transistor's gate area be included in overall area calculations for resistance determination. "Include
Ground Network" requests that ground networks be analyzed.

9−10−2: Node Extraction

Because Electric captures connectivity information during design, there is no need for "node extraction", the
process of extracting connectivity from layout. However, there are situations where a circuit has only layout

 Using The Electric VLSI Design System 233

and no connectivity, specifically when a circuit has been read into Electric from CIF, GDS, or other formats
that have no connectivity information in them.

When CIF, GDS, and other foreign file formats are read into Electric, the cells they create are composed
entirely of pure−layer nodes (see Section 6−10−1). These nodes appear to represent the circuit correctly, and
can even be written back out to CIF or GDS correctly. But the missing connectivity information means that
Electric cannot properly analyze these circuits (cannot do DRC, simulation, etc.)

The solution is to convert this geometry into properly connected components. To convert the current cell into
connected geometry, use the Extract Current Cell command (from menu Tool / Network). To convert the
current cell and all subcells, use the Extract Current Hierarchy command. Electric creates new versions of
the layout cells that have higher−level nodes and arcs in them.

Although the process of converting layout into connectivity information is difficult, it can usually be done
correctly. In Electric, this process is complicated by the fact that the resulting connectivity information must
be expressed as a set of "high−level" primitives (transistors and contacts) which have their own ways of
appearing in the layout. Therefore, it is not always possible to extract layout precisely. For example, if the
design rules for a transistor require that polysilicon extend beyond the gate area by 2 units, the transistor
primitive for that technology will have this extra geometry built into it. But what would happen if the
geometry to be extracted extends by 3 units? Electric adds an extra 1−unit arc to fill−out the extra geometry
that it finds. Worse yet, what would happen if the geometry extends by only 1 unit? Electric simply cannot
represent this with its primitives. It will create the transistor, but it will no longer match the original
geometry. In general, the system attempts to create high−level primitives that mimic the original geometry. It
often leaves small pure−layer nodes behind to complete the extraction. As an aid in debugging the extraction
process, these extra pure−layer nodes are highlighted in the resulting cell.

Two "Network" preferences are
available to control the
extraction process (in menu
File / Preferences..., "Tools"
section, "Network" tab).

The first is "Force exact cut
placement", which requires that
the cut (or via) locations appear
exactly in the same place once
extracted. Without this
preference, Electric will find
contact areas and replace them
with contact nodes regardless
of where the contact nodes
place the cuts. With this
preference selected, Electric
will place contact nodes in such
a way that the cut layers land in
the correct original locations.

234 Using The Electric VLSI Design System

The disadvantage of forcing exact cut placement is that Electric will create many contact nodes, one for each
cut layer. In multi−cut situations, this may be many more nodes than are necessary.

The other preference is "Grid−align geometry before extraction". Doing this makes the extraction process run
more smoothly, but may cost slightly in accuracy.

 Using The Electric VLSI Design System 235

Chapter 9: Tools

9−11: Compaction

The compaction tool squeezes layout down to minimal design−rule spacing. It does this by doing single−axis
compaction, alternating horizontal and vertical directions until no further space can be found. Each pass of
compaction squeezes either to the left or to the bottom of the circuit.

To compact, use the Do Compaction command (in menu Tool / Compaction).

The "Compaction" preferences (in menu
File / Preferences..., "Tools" section,
"Compaction" tab). can tell the compactor
to expand the circuit if it is too close for
the design rules.

For an example of compaction, open the
Samples library and edit the cell
"tool−Compaction" (you can read the
library with the Load Library command,
in menu Help / Samples).

Be warned that the compaction tool is experimental and doesn't always achieve optimal results.

236 Using The Electric VLSI Design System

Chapter 9: Tools

9−12: Silicon Compiler

Electric has a silicon compiler called QUISC (the Queen's University Interactive Silicon Compiler). It is a
powerful tool that can do placement and routing of standard cells from a schematic or a structural VHDL
description. When placing and routing VHDL, it is compiled into a netlist which is then used to drive
placement and routing. When placing and routing a schematic, it is converted into VHDL, compiled to a
netlist, and laid−out. Thus, a byproduct of silicon compilation will be a {net.quisc} view of a cell, and
potentially a {vhdl} view.

Be warned that the silicon compiler is rather old, and so it produces layout that alternates standard cell rows
and routing rows. Modern silicon compilers use multiple metal processes to route over the standard cells, but
this system does not. This system uses two layers: a vertical routing arc to run in and out of cells, and a
horizontal routing arc to run between the cells in the routing channel. It also uses power arcs to bring power
and ground to the cell rows, and main power arcs to connect the rails on the left and right.

The VHDL description is normally placed in the "vhdl" view of a cell (see Section 4−10 for more on text
editing). There is a VHDL example in cell "tool−SiliconCompiler{vhdl}" of the "samples" library. To access
it, use the Load Library command (in menu Help / Samples).

To convert a schematic or VHDL cell into layout, use the Convert Current Cell to Layout command (in
menu Tools / Silicon Compiler). To compile VHDL to the {net.quisc} view, use the Compile VHDL to
Netlist View command (this is typically not needed, since the previous command does it automatically).

When creating a schematic or VHDL cell to be compiled, it is important to know what primitives are
available in the standard cell library. Electric comes with a CMOS cell library in the MOSIS CMOS
("mocmos") technology. This library is not correct, and exists only to illustrate the Silicon Compiler. These
component declarations are available:

component and2 port(a1, a2 : in bit; y : out bit); end component;
component and3 port(a1, a2, a3 : in bit; y : out bit); end component;
component and4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component inverter port(a : in bit; y : out bit); end component;
component nand2 port(a1, a2 : in bit; y : out bit); end component;
component nand3 port(a1, a2, a3 : in bit; y : out bit); end component;
component nand4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component nor2 port(a1, a2 : in bit; y : out bit); end component;
component nor3 port(a1, a2, a3 : in bit; y : out bit); end component;
component nor4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component or2 port(a1, a2 : in bit; y : out bit); end component;
component or3 port(a1, a2, a3 : in bit; y : out bit); end component;
component or4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component rdff port(d, ck, cb, reset : in bit; q, qb : out bit); end component;
component xor2 port(a1, a2 : in bit; y : out bit); end component;

 Using The Electric VLSI Design System 237

The "Silicon Compiler" preferences (in menu File / Preferences..., "Tools" section, "Silicon Compiler" tab)
let you control many aspects of placement and routing.

The "Layout" section controls the number of rows of cells that will be created. A one−row circuit
may be exceedingly wide and short, so you may wish to experiment with this value. For a square
circuit, the number of rows should be the square root of the number of instances in the circuit (the
number of instances appears as the sum of the unresolved references, listed by the VHDL Compiler).

•

The "Arcs" section lets you set the horizontal and vertical routing arcs, as well as the power rails.•
The "Well" section gives you the option of placing blocks of P−well and N−well over the cell rows.•
The "Design Rules" section lets you control Via size, metal spacing, feed−through size, port distance,
and active distance.

•

238 Using The Electric VLSI Design System

Chapter 10: The JELIB File Format

10−1: JELIB File
Format

This chapter describes Electric's native file format, which ends in "jelib". The earlier file format, which ends
in "elib", remains undocumented and is no longer recommended.

JELIB files are text−readable files. Each line of a JELIB file starts with an identifying character that
distinguishes the line. Blank lines, and those that start with the comment identifying character (#) are ignored.
There is no limit to the length of a line of text.

After the identifying character at the start of a line, there are a set of fields. All of the fields are separated by
the separator character (|) except for the first field, which begins immediately after the identifying character.
No blank spaces are allowed on a line (that is, any blank spaces are treated as valid characters). Control
characters (such as the identifying characters) must be upper case. In order to insert a '|' or '\n' or '\r' into a
field, it must be enclosed in the quotation mark characters ("). Backslash character can be used inside
enclosed strings to denote special characters:

Characters Meaning

\n
line feed character
(\n)

\r
carriage return
character (\r)

\"
quotation mark
character (")

\\
backslash
character (\)

Each of the different types of lines in the file has a fixed set of fields that must appear. Some line types also
allow additional fields at the end to add variables (attribute/value pairs, see Section 10−4−1).

The JELIB file has 3 parts: the header, cells, and trailer.

The header has these elements:

H
Header information; variable
fields are allowed

V View information

L External library information

R
External cell in the above external
library

 Using The Electric VLSI Design System 239

F External export in the above
external cell

T
Technology information; variable
fields are allowed

D
Primitive Node information in the
above technology

P
Primitive Port information in the
above primitive node

W
Primitive Arc information in the
above technology

O Tool information

The cells have these elements:

C Cell header; variable fields are allowed

N
Primitive node information in the current
cell; variable fields are allowed

I
Cell instance information in the current
cell; variable fields are allowed

A
Arc information in the current cell;
variable fields are allowed

E
Export information in the current cell;
variable fields are allowed

X Cell termination

The trailer has this element:

G
Group
information

Everything in the file is completely ordered. There is an ordering to the external libraries, cells in those
libraries, technologies, tools, cells, nodes/arcs/exports in a cell, etc. Even the extra variables on a line are
ordered. The ordering is usually a name sort. By ordering everything in the file, the exact same file is
generated every time, and source−code comparison operations will accurately find differences between two
files. Note, however, that the JELIB reader does not require any sorting, and can handle the data in any order.

240 Using The Electric VLSI Design System

Chapter 10: The JELIB File Format

10−2−1: Header, View,
and Tool

Headers

The first line in the JELIB file should be the "H" header line. The syntax is:

H<name> | <version> [| <variable>]*

<name> the name of the library.

<version>
the version of Electric that
wrote the library.

<variable>
a list of variables on the library
(see Section 10−4−1).

The name of the library is used in the JELIB file to identify references to this library. The actual name of this
library is obtained from the file path of this JELIB file.

Example:

Hlatches|8.01

Declares that library "latches" was written from Electric version 8.01.

Views

All views used in the library must be declared.

V<full name> | <name>

<full name> the full name of the view.

<name>
the abbreviation name of
the view.

Example:

Vlayout|lay

Declares view with abbreviation name "lay" and full name "layout".

 Using The Electric VLSI Design System 241

Tools

There is no need to declare all tools in the header. The only reason for a tool declaration to exist is if the tool
has preferences variables stored on it. If there are multiple tool lines, they are sorted by the tool name. The
syntax is:

O<name> [| <variable>]*

<name> the name of the tool.

<variable>
a list of preferences on the tool (stored as
variables, see Section 10−4−1).

Example:

Osimulation|SpiceEngine()I2|SpiceLevel()I1

Declares two preferences on the “simulation” tool object. The first is called “SpiceEngine” and is set to the
integer value 2. The second is called “SpiceLevel” and is set to the integer value 1.

10−2−2: External References

After the header line, all external libraries cells and exports must be declared. This allows the file reader to
quickly find all libraries that will be needed for the design, and to reconstruct any missing cells and exports.
The cells are listed under their libraries. The exports are listed under their cells. If there are multiple external
library lines, they are sorted by library name; where there are multiple external cells in a library, they are
sorted by their name; and where there are multiple external exports in a cell, they are sorted by their name.

The syntax of an external library reference is:

L<name> | <path>

<name>
the name of the external
library.

<path>
the full path to the disk
file with the library.

The name of the library is used in JELIB file to references to this library. The actual name of this library is
obtained from the path.

The syntax of an external cell reference is:

R<name> | <lowX> | <highX> | <lowY> | <highY> |
<creation> | <revision>

<name>
the name of the external
cell.

<lowX>
the low X bounds of the
cell contents.

<highX>
the high X bounds of the
cell contents.

242 Using The Electric VLSI Design System

<lowY> the low Y bounds of the
cell contents.

<highY>
the high Y bounds of the
cell contents.

<creation>
the creation date of the
cell (Java format).

<revision>
the revision date of the
cell (Java format).

The Java format for dates (the creation and revision dates) is in milliseconds since the "epoch" (Midnight on
January 1, 1970, GMT).

The syntax of an external export reference is:

F<name> | <centerX> | <centerY>

<name>
the name of the external
export.

<centerX>
the X coordinate of the center
of export polygon.

<centerY>
the Y coordinate of the center
of export polygon.

Examples:

Lspiceparts|/home/strubin/electric/spiceparts.jelib
Rgate;1{sch}|−4|4|0|2|1092185029000|1092185060000
Fout|0|2

Declares that an external library called "spiceparts" will be used by the current library, and that it can be
found at "/home/strubin/electric/spiceparts.jelib". In that library is a cell called "gate;1{sch}" whose contents
run from –4 to 4 in X and 0 to 2 in Y. In that cell is an export called "out" with center at (0,2).

10−2−3: Technologies

Technologies

All technologies used in the library must be in the header. The other reason for a technology declaration to
exist is if the technology has preferences stored on it. If there are multiple technology lines, they are sorted by
technology name. The syntax is:

T<name> [| <variable>]*

<name> the name of the technology.

<variable>
a list of preferences on the technology (stored
as variables, see Section 10−4−1).

Examples:

 Using The Electric VLSI Design System 243

Tmocmos

Declares that there should be a technology called "mocmos".

Tmocmos|ScaleFORmocmos()D200

Declares the technology "mocmos" and also creates a preference on that technology object called
"ScaleFORmocmos" which is a double−precision value equal to 200.

244 Using The Electric VLSI Design System

Chapter 10: The JELIB File Format

10−3−1: Cells

After the header information, each cell is described. A cell consists of a cell declaration ("C") followed by a
number of node ("N"), arc ("A"), and export ("E") lines. The cell is terminated with a cell−end line ("X").
Inside of a cell, all nodes come first and are sorted by the node name; arcs come next and are sorted by the
arc name; finally come exports, sorted by the export name. Also, when there are multiple cells, their
appearance in the file is sorted by the cell name. The syntax is:

C<name> | <tech> | <creation> | <revision> | <flags> [| <variable>]*

<name>
the name of the cell in the form
"NAME;VERSION{VIEW}".

<tech> the technology of the cell.

<creation> the creation date of the cell (Java format).

<revision> the revision date of the cell (Java format).

<flags> flags for the cell.

<variable>
a list of variables on the cell (see Section
10−4−1).

The Java format for dates (the creation and revision dates) is in milliseconds since the "epoch" (Midnight on
January 1, 1970, GMT).

The <flags> field consists of any of the following letters, (sorted alphabetically):

"C" if this cell is part of a cell−library.
"E" if the cell should be created "expanded".
"I" if instances in the cell are locked.
"L" if everything in the cell is locked.
"T" if this cell is part of a technology−library.

Example:

CrxArray;1{lay}|mocmos|1092185029000|1092185060000|I

Declares cell "rxArray{lay}", version 1, associated with the "mocmos" technology. The cell was created at
date 1092185029000 and last modified at date 1092185060000. All instances in the cell are locked.

10−3−2: Node Instances

Inside of a cell definition, node instances are declared with the "N" and "I" lines. "N" is for primitive nodes
and "I" is for cell instances. All nodes are sorted by the node name. The syntax is:

 Using The Electric VLSI Design System 245

N<type> | <name> | <nameTD> | <x> | <y> | <width> | <height> | <orientation> | <flags> [|
<variable>>]*

I<type> | <name> | <nameTD> | <x> | <y> | <orientation> | <flags> | <TD>> [| <variable>]*

<type>

the type of the node instance. For primitive node instances, this
has the form: [<technology>:]<primitive−node>. If <technology>
is omitted, the technology of the cell is assumed. For cell
instances, it has the form: [<library>:]<cell>;<version>{<view>}.
If <library> is omitted, the library defined by this JELIB file is
assumed.

<name>
the name of the node instance. If there are multiple nodes with the
same name, then the name is quoted, and a unique integer follows
the close quote.

<nameTD> a text descriptor for the name (when displayed).

<x> the X coordinate of the anchor point of the node instance.

<y> the Y coordinate of the anchor point of the node instance.

<width> the width of the primitive node (must be non−negative).

<height> the height of the primitive node (must be non−negative).

<orientation> the orientation of the node (see below).

<flags> flags for the node instance (see below).

<TD>
a text descriptor for the cell instance name (does not apply to
primitives).

<variable> a list of variables on the node instance (see Section 10−4−1).

The <orientation> field consists of any of the following letters, with an optional numeric part at the end:

"X" if the node instance is X−mirrored (mirrored about Y axis).
"Y" if the node instance is Y−mirrored (mirrored about X axis).
"R" each letter rotates the node instance at 90 degrees counter−clockwise.
Num Any digits at the end are additional rotation in tenths of a degree.

The <flags> field consists of any of the following letters, sorted alphabetically, with the numeric part at the
end:

"A" if the node instance is hard−to−select.
"E" if the node instance is "expanded".
"L" if the node instance is locked.
"V" if the node instance is visible only inside the cell.
"W" if the node instance is wiped (covered by an arc, so no need to draw).
Num Any digits at the end are the technology−specific bits.

Examples:

Nschematic:Transistor|mos@0||2|0|4|4|R|2|ATTR_length(D5G0.5;X−0.5;Y−1;)S2

Places a schematic Transistor called "mos@0" at (2,0), size 4x4, rotated 90 degrees. The flag field "2" is
numeric, and therefore is technology−specific information (in this case, it makes the transistor be pMOS).

246 Using The Electric VLSI Design System

There is one attribute on the node, called "length", with the value "2" (a string). This attribute is displayed,
anchored at its center ("D5"), is 1 half grid unit in size ("G0.5;"), and is offset (−0.5, −1) from the node center
("“X−0.5;Y−1;").

Ilow;1{lay}|"HAPPY"1||14|12|Y|E|D5G4;

Places an instance of cell "low{lay}" from the library defined in this JELIB file. The instance is named
"HAPPY" (the name field is "HAPPY"1 which means this is the first instance with this name). It is at
(14,12),mirrored in Y, and is rotated 0. The "E" means that the node is expanded, but when it is unexpanded,
its name is described by D5G4; (D5 means a centered anchor point, G4; means size 4 units).

10−3−3: Arc Instances

Inside of a cell definition, arc instances are declared with the "A" line. All arcs are sorted by the arc name.
The syntax is:

A<type> | <name> | <nameTD> | <width> | <flags> | <headNode> | <headPort> | <headX> | <headY>>
| <tailNode> | <tailPort> | <tailX> | <tailY>> [| <variable>]*

<type>
the type of the arc instance. It has the form:
[<technology>:]<arc>. If technology is omitted, the
technology of the cell is assumed.

<name> the name of the arc instance.

<nameTD> a text descriptor for the name (when displayed).

<width> the width of the arc instance.

<flags> flags for the arc instance (see below).

<headNode> the name of the node at the head of the arc instance.

<headPort>
the name of the port on the head node (may be blank if
there are no choices).

<headX> the X coordinate of the head of the arc instance.

<headY> the Y coordinate of the head of the arc instance.

<tailNode> the name of the node at the tail of the arc instance.

<tailPort>
the name of the port on the tail node (may be blank if there
are no choices).

<tailX> the X coordinate of the tail of the arc instance.

<tailY> the Y coordinate of the tail of the arc instance.

<variable> a list of variables on the arc instance (see Section 10−4−1).

The <flags> field consists of any of the following letters, sorted alphabetically, with the numeric part at the
end:

"A" if the arc instance is hard−to−select.
"B" if the arc instance has an arrow line on the body (use "X" and "Y" for arrow heads).
"F" if the arc instance is NOT fixed−angle (fixed−angle is more common).
"G" if the arc instance has its head connection negated.
"I" if the arc instance has its head NOT extended.

 Using The Electric VLSI Design System 247

"J" if the arc instance has its tail NOT extended.
"N" if the arc instance has its tail connection negated.
"R" if the arc instance is rigid.
"S" if the arc instance is slidable.
"X" if the arc instance has an arrow on the head (use "B" for an arrow body).
"Y" if the arc instance has an arrow on the tail (use "B" for an arrow body).
Num Any digits at the end are the angle of the arc (in tenths of a degree).

Examples:

AMetal−1|net@0||3|S1800|contact@0||10|10|pin@0||20|10

Places a metal−1 arc (from the technology of the cell). The arc is named "net@0", is 3 wide, slidable, and at a
180 degree angle. The arc runs from (10,10) on node "contact@0", to (20,10) on node "pin@0".

Aschematic:bus|net@161||1|IJ2700|busHat@4|s[1:8]|42|14|conn@15|y|42|25

Places a bus arc (from schematic) named "net@161"”, width 1, not end−extended on either end, at 270
degrees angle. The bus runs from (42,14) on node busHat@4 (port "s[1:8]") to (42,25) on node "conn@15"
(port "y").

10−3−4: Exports

Inside of a cell definition, exports are declared with the "E" line. All exports are sorted by their name. The
syntax is:

E<name> | <TD> | <originalNode> | <originalPort> | <flags> | [| <variable>]*

<name> the name of the export.

<TD>
the text descriptor for writing the port (described
later).

<originalNode>
the name of the node instance in this cell that the
export resides on.

<originalPort>
the name of the port on the exported node instance
(may be blank if there are no choices).

<flags> flags for the export (see below).

<variable>
a list of variables on the export (see Section
10−4−1).

The <flags> field has the format:

<characteristics> [/A] [/B]

<characteristics> the nature of the export. Choose from the following:

"U" unknown.
"I" input.
"O" output.
"B" bi−directional.

248 Using The Electric VLSI Design System

"P" power.
"G" ground.
"C" clock.
"C1" clock phase 1.
"C2" clock phase 2.
"C3" clock phase 3.
"C4" clock phase 4.
"C5" clock phase 5.
"C6" clock phase 6.
"RO" reference output.
"RI" reference input.
"RB" reference base.
/A indicates that the export is always drawn
/B indicates that the export is body−only (no equivalent on the icon)

Example:

Es[18]||conn@14|a|D5G2;|I/B

Exports port "a" of node instance "conn@14"” and calls it "s[18]". The text of the export is attached at the
center of the port ("D5") and is 2 units high ("G2;"). It is of type input, and only appears in the contents (not
the icon).

 Using The Electric VLSI Design System 249

Chapter 10: The JELIB File Format

10−4−1: Variables

Variables may be attached to any object in the Electric database. They appear at the end of many of the lines
in the file. When more than 1 variable is listed on an object, they are sorted by the variable name. The syntax
is:

<name> (<TD>) <type> <value>

<name> the name of the variable.

<TD>
the text descriptor (when the variable
is visible).

<type> the type of data attached.

<value>
the data. If it starts with "[", it is an
array of the form [, , …]

<name> and <value> fields may be enclosed in quotation marks. Backslash character can be used inside
enclosed strings to denote special characters.

The <type> field can be one of these: "B" Boolean ("T" or "F")
"C" Cell (of the form :).
"D" Double.
"E" Export (of the form : :).
"F" Float.
"G" Long.
"H" Short.
"I" Integer.
"L" Library name.
"O" Tool name.
"P" Primitive Node prototype (of the form :).
"R" Arc prototype (of the form :).
"S" String.
"T" Technology name.
"V" Point2D (of the form <x> / <y>).
"Y" Byte (0−255).

Examples:

ART_message(D5G8;)StxArray4x4B

Adds a variable called "ART_message" with the string "txArray4x4B". The text descriptor indicates centered
text ("D5") that is 8 units tall ("G8;").

ART_degrees()F[0.0,3.1415927]

250 Using The Electric VLSI Design System

Adds a variable called "ART_degrees" with an array of 2 floating point values: 0.0 and 3.1415927.

EXPORTS()E[ccc:gate;1{sch}:a,"ccc:hate;1{sch}:b[0:4]"]

Adds a variable called "EXPORTS" with an array of 2 exports of the cell "ccc:gate;1{sch}": "a" and "b[0:4]".

ATTR_z0(D5G0.5;NPY1;)I50

Adds an attribute called "z0" with the integer value 50. It is displayed anchored at the center ("D5"), 0.5 unit
tall ("G0.5;"), written as "name=value" ("N"), is a parameter ("P"), and is offset by 1 in Y ("Y1;").

10−4−2: Text Descriptors

Text descriptors appear in every Variable, and also in other places (cell instances and exports). It consists of
these fields:

A <size> ; Text is absolute size (in points).

B Text is bold.

C <color> ; Text is drawn in the color index given.

D0
Text is anchored at its center, limited to the
size of its owner.

D1 Text is anchored at its lower−left.

D2 Text is anchored at its bottom.

D3 Text is anchored at its lower−right.

D4 Text is anchored at its left.

D5 Text is anchored at its center.

D6 Text is anchored at its right.

D7 Text is anchored at its upper−left.

D8 Text is anchored at its top.

D9 Text is anchored at its upper−right.

F ; Text is shown in the named font.

G <size> ; Text has relative size (in grid units).

H
Variable is inheritable (only for variables
on Cells or Exports).

I Text is italic.

L Text is underlined.

N
Variable is written in the form
"NAME=VALUE".

OJ Text is Java code.

OL Text is Lisp code.

OT Text is TCL code.

P Variable is a parameter.

R Text is rotated 90 degrees.

RR Text is rotated 180 degrees.

RRR Text is rotated 270 degrees.

 Using The Electric VLSI Design System 251

T Text is interior (seen only when inside the
cell).

UR Value is in Resistance units.

UC Value is in Capacitance units.

UI Value is in Inductance units.

UA Value is in Current units.

UV Value is in Voltage units.

UD Value is in Distance units.

UT Value is in Time units.

X <xoff> ; Text is offset in X from object center.

Y <yoff> ; Text is offset in Y from object center.

Example:

D4G8;

The text is anchored on the left ("D4") and is 8 units tall ("G8;").

10−4−3: Groups

After all of the cells are listed, they are organized into groups. Each group line consists simply of a list of
cells in that group. The first cell listed is the “main schematics” of the group. If there is no such cell, the first
field is empty. After that, the cells appear in alphabetical order.

When multiple groups are declared, they appear sorted by the group name (which is derived from the cell
names in it). The syntax is:

G<cell> | <cell> | … | <cell>

<cell>
the name of the cells in the group. <cell> may consists
only of proto name, because all cells with the same
base name are put into the same group.

Examples:

Gsam;2{sch}

"sam;2{sch}" is the main schematic of the cell group consisting of all views and versions of cells with proto
name "sam".

G|high|higha

Places all views and versions of cells with proto names "high" and "higha" in the same group (there is no
main schematic).

10−4−4: Example

As an example of the JELIB format, let us assume a design with two levels of hierarchy. The bottom level of
hierarchy (cell "low") has 3 nodes, two arcs, and an export:

252 Using The Electric VLSI Design System

The top level of hierarchy (cell "high") has two instances of the cell (the right instance is rotated 90 degrees)
and an arc connecting them:

Here is the JELIB file for the above layout.

header information:
Hccc|8.02

Views:
Vlayout|lay

Technology mocmos
Tmocmos|MoCMOSNumberOfMetalLayers()I6

 Using The Electric VLSI Design System 253

Cell high{lay}
Chigh;1{lay}|mocmos|1093555876000|1094258888640|
Ngeneric:Facet−Center|art@0||0|0|0|0||AV
Ilow;1{lay}|low@0||−14|12||E|D5G4;
Ilow;1{lay}|low@1||15|12|R|E|D5G4;
AMetal−1|net@0||3|S0|low@1||5|22|low@0||−4|22
X

Cell low{lay}
Clow;1{lay}|mocmos|1093555232000|1094258870406|
Ngeneric:Facet−Center|art@0||0|0|0|0||AV
NMetal−1−Metal−2−Con|contact@0||−10|10|5|5||
NMetal−1−Pin|pin@0||10|10|3|3||W
NMetal−2−Pin|pin@1||−10|−10|3|3||W
AMetal−1|net@0||3|S1800|contact@0||−10|10|pin@0||10|10
AMetal−2|net@1||3|S900|contact@0||−10|10|pin@1||−10|−10
Ea|D5G2;|pin@0||I
X

Groups:
G|high;1{lay}
G|low;1{lay}

254 Using The Electric VLSI Design System

	Table of Contents
	Chapter 1: Introduction
	1-1: Welcome
	1-2: About Electric
	1-3: Requirements
	Memory Control

	1-4: Setup
	1-5: Plug-Ins
	1-6: Fundamental Concepts
	1-7: The Display
	1-8: The Mouse
	1-9: The Keyboard
	1-10-1: IC Layout Example: Make a Cell
	1-10-2: IC Layout Example: Create a Node
	1-10-3: IC Layout Example: Highlighting
	1-10-4: IC Layout Example: Make an Arc
	1-10-5: IC Layout Example: Constraints
	1-10-6: IC Layout Example: Hierarchy
	1-10-7: IC Layout Example: Exports
	1-10-8: IC Layout Example: Final Points

	1-11-1: Schematics Example: Make a Cell
	1-11-2: Schematics Example: Make a Node
	1-11-3: Schematics Example: Highlighting
	1-11-4: Schematics Example: Make an Arc
	1-11-5: Schematics Example: Multi-Input gates and Negation
	1-11-6: Schematics Example: Constraints
	1-11-7: Schematics Example: Hierarchy and Icons
	1-11-8: Schematics Example: Final Points

	Chapter 2: Basic Editing
	2-1-1: Selecting Nodes and Arcs
	2-1-2: Selection Appearance
	2-1-3: Unusual Selection: Areas and Text
	Selecting Text
	2-1-4: Controlling Selection
	2-1-5: Easy and Hard Selection

	2-2-1: Node Creation
	2-2-2: Arc Creation
	2-2-3: Special Cases

	2-3: Circuit Deletion
	2-4-1: Movement
	2-4-2: Other Modification

	2-5-1: Node Sizing
	2-5-2: Arc Sizing

	2-6: Changing Orientation

	Chapter 3: Hierarchy
	3-1: Cells
	3-2: Cell Creation and Deletion
	3-3: Creating Instances
	3-4: Examining Cell Instances
	3-5: Moving Up and Down the Hierarchy
	3-6-1: Export Creation
	3-6-2: Export Information
	3-6-3: Export Deletion and Movement

	3-7-1: Cell Lists
	3-7-2: Cell Graphing
	3-7-3: Cell Properties

	3-8: Rearranging Cell Hierarchy
	3-9-1: Introduction to Libraries
	3-9-2: Reading Libraries
	3-9-3: Writing Libraries
	3-9-4: Standard Cell Libraries

	3-10: Copying Cells Between Libraries
	3-11-1: Setting a Cell's View
	3-11-2: Switching between Views of a Cell
	3-11-3: Creating and Deleting Views
	3-11-4: Automatic Icon Generation

	Chapter 4: Display
	4-1: The Tool Bar
	4-2: The Messages Window
	4-3: Creating and Deleting Editing Windows
	4-4-1: Scaling
	4-4-2: Panning
	4-4-3: Saving Views

	4-5: Layer Visibility
	4-6-1: Electric's Color Model
	4-6-2: Editing Colors
	4-6-3: Editing Patterns

	4-7-1: Drawing a Grid
	4-7-2: Aligning to a Grid
	4-7-3: Aligning to Objects
	4-7-4: Measuring

	4-8: The Cell Explorer
	4-9: Printing
	4-10: Text Windows
	4-11-1: Introduction
	Troubleshooting
	4-11-2: 3D Preferences
	Lights
	4-11-3: Behaviors and Animation

	4-12-1: Digital Waveform Windows
	Wave Panels
	Time Control
	Stimuli (for Built-in Simulators only)
	Other Controls
	4-12-2: Analog Waveform Windows
	Wave Panels
	Time Control
	Other Controls

	Chapter 5: Arcs
	5-1: Introduction to Arcs
	5-2-1: Rigid and Fixed-Angle Arcs
	5-2-2: Slidable Arcs
	5-2-3: Constraint Propagation

	5-3: Setting Constraints
	5-4-1: Directionality
	5-4-2: Negation
	5-4-3: End Extension
	5-4-4: Naming
	5-4-5: Curvature

	5-5: Default Arc Properties

	Chapter 6: Advanced Editing
	6-1: Making Copies
	Duplication
	Cut-and-Paste

	6-2: Creation Defaults
	6-3: Preferences
	6-4: Making Arrays
	6-5: Spreading Circuitry
	6-6: Replacing Circuitry
	6-7: Undo Control
	6-8-1: Understanding Text
	6-8-2: Selecting Text
	6-8-3: Modifying Text
	6-8-4: Text Defaults
	6-8-5: Text Attributes
	Special Considerations
	6-8-6: Cell Parameters
	Parameter Text

	6-9-1: Introduction to Networks
	6-9-2: Naming Networks
	6-9-3: Bus Naming
	6-9-4: Power and Ground
	6-9-5: Global Networks
	Global Partitioning

	6-10-1: Introduction to Outlines
	6-10-2: Manipulating Outlines
	6-10-3: Special Outline Generation

	6-11: Interpretive Languages
	6-12: Project Management
	Setting Up Project Management
	Checking Cells In and Out
	Advanced Commands
	Under the Hood

	6-12: Emergencies

	Chapter 7: Technologies
	7-1-1: Technologies
	7-1-2: Controlling Technologies

	7-2-1: Scale
	7-2-2: Units

	7-3-1: I/O Specifications
	7-3-2: CIF Control
	7-3-3: GDS Control
	7-3-4: EDIF Control
	7-3-5: DEF Control
	7-3-6: CDL Control
	7-3-7: DXF Control
	7-3-8: SUE Control

	7-4-1: The MOS Technologies
	7-4-2: The MOSIS CMOS Technology

	7-5-1: The Schematics Technology
	7-5-2: Multipage Schematics and Frames

	7-6-1: The Artwork Technology
	7-6-2: The FPGA Technology
	Primitive Definition Section
	Block Definition and Architecture Sections
	Commands
	7-6-3: The Generic Technology
	Special Arcs
	Special Nodes

	Chapter 8: Creating New Technologies
	8-1: Designing New Technologies
	8-2: Converting between Technologies and Libraries
	Converting Technologies to Libraries
	Technology-Editing Mode
	Converting Libraries to Technologies
	Cleaning Up
	Using Technology Libraries

	8-3: Hierarchies of Technology Libraries
	8-4: The Layers Cells
	Layer Function

	8-5: The Arc Cells
	Creating and Deleting Arc Cells
	Editing Special Arc Information
	Editing Arc Geometry

	8-6: The Node Cells
	Creating and Deleting Node Cells
	Editing Special Node Information
	Editing Node Geometry
	Special Node Considerations

	8-7: Miscellaneous Information
	The Support Cell
	Transparent Colors
	Design Rules

	8-8: How Technology Changes Affect Existing Libraries
	Adding layers, adding arcs, adding nodes, adding miscellaneous information
	Deleting layers
	Deleting nodes, deleting arcs
	Deleting miscellaneous information
	Modifying layers
	Modifying arcs, modifying nodes
	Modifying miscellaneous information

	8-9: Examples of Use
	Example: Modifying a Layer's Appearance
	Example: Creating a New Node

	Chapter 9: Tools
	9-1: Introduction to Tools
	9-2-1: Incremental DRC
	9-2-2: Hierarchical DRC
	9-2-3: Coverage Rules
	9-2-4: Assura DRC
	9-2-5: Design Rules

	9-3-1: Well and Substrate Checking
	9-3-2: Antenna Rule Checking

	9-4-1: Introduction to Simulation
	9-4-2: Verilog
	9-4-3: Spice
	9-4-4: Spice and Verilog Primitives
	9-4-5: FastHenry

	9-5-1: IRSIM
	9-5-2: ALS
	Preferences
	9-5-3: ALS Concepts
	Behavioral Models
	Simulator Internals
	9-5-4: ALS Gates
	The i: and o: Statements (Input and Output)
	Signal References in the i: Statement
	Signal References in the o: Statement
	The t: Statement (Time Delay)
	The Delta Timing Distribution of the t: Statement
	The Linear Timing Distribution of the t: Statement
	The Random Probability Function of the t: Statement
	The Fanout Statement
	The Load Statement
	The Priority Statement
	The Set Statement
	9-5-5: ALS Functions
	Declaring Input and Output Ports
	Other Specifications
	Example of Function Use
	9-5-6: ALS Models
	The Set Statement

	9-6-1: Introduction to Routing
	9-6-2: Auto Stitching
	9-6-3: Mimic Stitching
	9-6-4: Maze Routing
	9-6-5: River Routing

	9-7-1: NCC Overview
	 Improvements
	 Limitations
	 Example
	9-7-2: NCC Commands
	9-7-3: NCC Preferences
	 Operation Section
	 Size Checking Section
	 Checking All Cells Section
	 Reporting Progress Section
	 Error Reporting Section
	9-7-4: NCC Annotations
	exportsConnectedByParent <string or regular expression>
	skipNCC <comment>
	flattenInstances <string or regular expression> ...
	notSubcircuit <comment>
	joinGroup <cell name>
	blackBox <comment>

	9-8-1: Pad Frame Generation
	9-8-2: Other Generators

	9-9: Logical Effort
	Logical Effort Gates
	Logical Effort Libraries
	Advanced Features
	Commands

	9-10-1: Parasitic Extraction
	9-10-2: Node Extraction

	9-11: Compaction
	9-12: Silicon Compiler

	Chapter 10: The JELIB File Format
	10-1: JELIB File Format
	10-2-1: Header, View, and Tool
	Headers
	Views
	Tools
	10-2-2: External References
	10-2-3: Technologies
	Technologies

	10-3-1: Cells
	10-3-2: Node Instances
	10-3-3: Arc Instances
	10-3-4: Exports

	10-4-1: Variables
	10-4-2: Text Descriptors
	10-4-3: Groups
	10-4-4: Example

